Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=2012
nên x+1=2013
\(f\left(x\right)=x^{2013}-x^{2012}\left(x+1\right)+x^{2011}\left(x+1\right)-...+x\left(x+1\right)-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...+x^2+x+1\)
=x+1=2013
x=2012
nên x+1=2013
\(f\left(x\right)=x^{2013}-x^{2012}\left(x+1\right)+x^{2011}\left(x+1\right)-...-x^2\left(x+1\right)+x\left(x+1\right)-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}-...-x^3-x^2+x^2+x-1\)
=x-1
=2012-1=2011
f(x) = x2013 - 2013x2012 + 2013x2011 - 2013x2010 + .... + 2013x - 1
= x2013 - (2012 + 1)x2012 + (2012 + 1)x2011 - (2012 + 1)x2010 + .... + (2012 + 1)x - 1
= x2013 - (x + 1)x2012 + (x + 1)x2011 - (x + 1)x2010 + .... + (x + 1)x - 1
= x2013 - x . x2012 - 1 . x2012 + x . x2011 + 1 . x2011 - x . x2010 - 1 . x2010 + ... + x . x + 1 . x - 1
= x2013 - x2013 - x2012 + x2012 + x2011 - x2011 - x2010 + .... + x2 + x - 1
= x - 1 = 2012 - 1 = 2011
để mk sửa lại đề cho
\(f\left(x\right)=\)\(x^{2013}-2013x^{2012}+..+2013-1\)
\(=x^{2013}-\left(2012+1\right)x^{2012}+...+\left(2012+1\right)x-1\)
\(=x^{2013}-2012x^{2012}-x^{2012}+...+2012x+x-1\)
\(=x^{2012}\left(x-2012\right)-x^{2011}\left(x-2012\right)+...+x^2\left(x-2012\right)+2012-1\)
\(\Rightarrow f\left(2012\right)=x^{2012}\left(2012-2012\right)-x^{2011}\left(2012-2012\right)+...+x\left(2012-2012\right)+2012-1\)
\(=x^{2012}.0-x^{2011}.0+...+x.0+2012-1\)
=2011
Vậy f(2012)=2011
Đặt \(g\left(x\right)=x^{2015}-x^{2014}+x^{2013}-...+x-1\)
Dễ thấy: \(f\left(x\right)=x^{2016}-2013\times g\left(x\right)\Rightarrow f\left(2012\right)=2012^{2016}-2013\times g\left(2012\right)\)(a)
Ta có: \(\left(x+1\right)\times g\left(x\right)=\left(x+1\right)\left(x^{2015}-x^{2014}+x^{2013}-...+x-1\right)\)
\(\Rightarrow\left(x+1\right)\times g\left(x\right)=x^{2016}-1\)
\(\Rightarrow\left(2012+1\right)\times g\left(2012\right)=2012^{2016}-1\)hay: \(2013\times g\left(2012\right)=2012^{2016}-1\)
Thay vào (a) ta có: \(f\left(2012\right)=2012^{2016}-\left(2012^{2016}-1\right)=1\).
Đặt \(\frac{x}{2011}=\frac{y}{2012}=\frac{z}{2013}=k\)
\(\Rightarrow\hept{\begin{cases}x=2011k\\y=2012k\\z=2013k\end{cases}}\)
+) Ta có : \(\frac{2012z-2013y}{2011}=\frac{2012.2013k-2013.2012k}{2011}=0\)
\(\frac{2013x-2011z}{2012}=\frac{2013.2011k-2011.2013k}{2012}=0\)
\(\frac{2011y-2012x}{2013}=\frac{2011.2012k-2012.2011k}{2013}=0\)
Do đó : \(\frac{2012z-2013y}{2011}=\frac{2013x-2011z}{2012}=\frac{2011y-2012x}{2013}\left(=0\right)\) ( đpcm )