K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Linh nè - Toán lớp 9 | Học trực tuyến

2 tháng 4 2020

Ta có \(f\left(x\right)=ax^2+bx+c>0\forall x\)

\(\Rightarrow f\left(-2\right)>0\Rightarrow4a-2b+c>0\Rightarrow4a+c>2b\)(*)

Ta có f(x)=ax2+bx+c >0 với mọi x

=> f(-1) >0 => a-b+c>0 => a+c >b (**)

Từ (*) (**) => 5a+2c > 3b => \(\frac{5a+2c}{b}>3\left(b>0\right)\)

\(\Rightarrow\frac{3350a+1340c}{b}>2010\)(***)

Mặt khác ta lại có:

f(x)=ax2+bx+c>0 với mọi x

=> b2<4ac (vì a>0) => 4ac>b2

\(\Leftrightarrow\frac{4ac}{b}>b\Leftrightarrow\frac{4ac}{b}+\frac{1}{b}>b+\frac{1}{b}\ge2\)(Theo BĐT Cosi), mà 0<b\(\ne\)1

=> \(\frac{4ac}{b}+\frac{1}{b}>2\)(****)

Từ (***)(****) \(\Rightarrow\frac{3350+1340c}{b}+\frac{4ac+1}{b}>2012\)

\(\Leftrightarrow\frac{3350+1340c+4ac+2b+1}{b}>2014\left(đpcm\right)\)

16 tháng 1 2019

1. \(a< b\Leftrightarrow2a< 2b\Leftrightarrow2a+1< 2b+1\)

\(a< b\Leftrightarrow-3a>-3b\Leftrightarrow-3a>-3b-1\)

2.\(a>b>0\Leftrightarrow a.\frac{1}{ab}>b.\frac{1}{ab}\Leftrightarrow\frac{1}{b}>\frac{1}{a}\Leftrightarrow\frac{1}{a}< \frac{1}{b}\)

7 tháng 7 2018

a) Ta có: \(x^2-20x+101=x^2-2.x.10+10^2+1=\left(x-10\right)^2+1\)

Vì \(\left(x-10\right)^2\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow\left(x-10\right)^2+1>1>0\)

Vậy x2-20x+101 >0 với mọi x

b) \(4a^2+4a+2=\left(2a\right)^2+2.2a.1+1+1=\left(2a+1\right)^2+1\)

Vì \(\left(2a+1\right)^2\ge0\left(\forall a\in Z\right)\)

\(\Rightarrow\left(2a+1\right)^2+1>1>0\)

Vậy 4a2+4a+2 > 0 với mọi a

c) \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+16+8\right)+16\)

\(=\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+16\)

\(=\left(x^2+10x+20\right)^2\) \(\ge0\left(\forall x\right)\)

7 tháng 7 2018

Giúp mình với !!

22 tháng 4 2016

Mình học lớp 7 nên chỉ làm được phần b, thôi

b, * Nếu x=1 thì: 

1+1=2

* Nếu x=2 thì:

2+ 1/2 >2

* Nếu x>2 

=> x + 1/x   >   2 ( vì 1/x là số dương )

Vậy x + 1/x >=2 (x>0)

22 tháng 4 2016

Phần A mình tìm được ở trang này nè http://olm.vn/hoi-dap/question/162099.html

20 tháng 1 2020

Bài 1 bạn tham khảo tại đây nhé:
Tim x,y,z thoa man : x^2 +5y^2 -4xy +10x-22y +Ix+y+zI +26 = 0 ...

Chúc bạn học tốt!

20 tháng 1 2020

@Băng Băng 2k6

10 tháng 6 2017

a , Ta có \(x^2+x+1=x^2+2x\frac{1}{2}+\left(\frac{1}{2}\right)^2+\)\(\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\) \(\ge\frac{3}{4}>0\left(đpcm\right)\)

b , Ta có : \(4x^2-2x+3\)\(\left(2x\right)^2-2.2x.1+1^2+2\) = \(\left(2x-1\right)^2+2\ge2>0\left(đpcm\right)\)

c , Ta có \(3x^2+2x+1=x^2-\frac{2x}{3}+\frac{1}{9}+2x^2+\frac{8x}{3}+\frac{8}{9}\)

\(\left(x-\frac{1}{3}\right)^2+2\left(x^2+\frac{4x}{3}+\frac{4}{9}\right)=\left(x-\frac{1}{3}\right)^2+2\left(x+\frac{2}{3}\right)^2\ge0\)

Vì Dấu "=" không thể xảy ra , do đó \(3x^2+2x+1>0\left(đpcm\right)\)

10 tháng 6 2017

a,-x2+x+1>0 với mọi x mới đúng

28 tháng 4 2016

1. *nếu x>=1.Ta có:A=x5(x3-1)+x(x-1)>0

    *nếu x<1. ta có: A=x8 +x (1-x3)+ (1-x)>0  (từng số hạng >o)

   

28 tháng 4 2016

ai là bạn cũ của NICK "Kiệt" thì kết bạn với tui ! nhất là những người có choi Minecraft !

6 tháng 10 2019

\(\frac{1}{a}+\frac{1}{b}-\frac{2}{c}=0\Leftrightarrow\hept{\begin{cases}\frac{1}{b}=\frac{2}{c}-\frac{1}{a}=\frac{2a-c}{ac}\\\frac{1}{a}=\frac{2}{c}-\frac{1}{b}=\frac{2b-c}{bc}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2a-c=\frac{ac}{b}\\2b-c=\frac{bc}{a}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{a+c}{2a-c}=\frac{b\left(a+c\right)}{ac}=\frac{ab}{ac}+\frac{bc}{ac}=\frac{b}{c}+\frac{b}{a}\\\frac{b+c}{2b-c}=\frac{a\left(b+c\right)}{bc}=\frac{ab}{bc}+\frac{ac}{bc}=\frac{a}{c}+\frac{a}{b}\end{cases}}\)

Áp dụng BĐT Cô - si cho 2 số dương ta có :

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

\(\frac{1}{a}+\frac{1}{b}-\frac{2}{c}=0\Leftrightarrow\frac{2}{c}=\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{c}\ge2\) ( áp dụng \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) )

Ta có : \(\frac{a+c}{2a-c}+\frac{b+c}{2b-c}=\left(\frac{a}{b}+\frac{b}{a}\right)+\frac{a+b}{c}\ge2+2=4\)

Dấu " = " xảy ra khi và chỉ khi a = b = c 

Chúc bạn học tốt !!!