Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(-2\right)=4a-2b+c\)
\(f\left(3\right)=9a+3b+c\)
\(\Rightarrow f\left(-2\right)+f\left(3\right)=0\)
Tích 2 số đối nhau bé hơn hoặc bằng 0
=>dpcm 😀
nhờ bạn giúp mình giải bài với....!
Cho tam giác ABC nhọn (AB<AC). Các đường cao AE,BF cắt nhau tại H. Gọi M là trung điểm của BC, qua H vẽ đường thẳng vuông góc với HM , a cắt AB,AC lần lượt tại I,K. gọi G là giao điểm cuarCH và AB. chứng minh:\(\frac{AH}{HE}+\frac{BH}{HF}+\frac{CH}{HG}< 6\)
giúp mình với nha! càng nhanh càng tốt bạn nhé! cảm ơn trước vậy.....
https://olm.vn/hoi-dap/detail/82556580191.html
bn vào đây xem nek !!!@@@
\(N\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\)
\(=4a-2b+c\)
\(N\left(3\right)=a.3^2+b.3+c\)
\(=9a+3b+c\)
\(N\left(-2\right)+N\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)
\(=4a-2b+c+9a+3b+c\)
\(=13a+b+2c\)
Theo bài : \(13a+b+2c=0\)
\(\rightarrow N\left(-2\right)+N\left(3\right)=0\)
\(\rightarrow N\left(-2\right)=-N\left(3\right)\)
\(\Rightarrow N\left(-2\right).N\left(3\right)=-N\left(3\right).N\left(3\right)\)
\(=-[N\left(3\right)]^2\)
Ta có : \([N\left(3\right)]^2\ge0\)
\(\rightarrow-[N\left(3\right)]^2\le0\)
\(\rightarrow N\left(-2\right).N\left(3\right)\le0\left(đpcm\right)\)
Ta có : \(x+y+z=0\)
\(\Rightarrow\hept{\begin{cases}x=-\left(y+z\right)\\y=-\left(z+x\right)\\z=-\left(x+y\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x^2=\left(y+z\right)^2\\y^2=\left(z+x\right)^2\\z=\left(x+y\right)^2\end{cases}}\)
\(\Rightarrow ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)
\(=ay^2+az^2+bz^2+bx^2+cx^2+cy^2+2\left(ayz+bzx+cxy\right)\)
\(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\left(1\right)\)
Từ \(a+b+c=0\) \(\Rightarrow\hept{\begin{cases}b+c=-a\\c+a=-b\\a+b=-c\end{cases}}\)
Thay vào \(\left(1\right)\), ta được :
\(ax^2+by^2+cz^2=-ax^2-by^2-cz^2+2\left(ayz+bzx+cxy\right)\)
Ta có : \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)\(\Rightarrow ayz+bzx+cxy=0\)
\(\Rightarrow ax^2+by^2+cz^2=-ax^2-by^2-cz^2\)
\(\Rightarrow2\left(ax^2+by^2+cz^2\right)=0\)
\(\Rightarrow ax^2+by^2+cz^2=0\left(đpcm\right)\)
Câu 2: Ta có: a , b ,c là các số thực dương ( bài cho )
=> Tồn tại 3 số thực dương x , y, z thỏa mãn : \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{x}{z}\)
=> \(\frac{a-1}{c}+\frac{c-1}{b}+\frac{b-1}{a}=\frac{x^3}{xyz}+\frac{y^3}{xyz}+\frac{z^3}{xyz}=\frac{x^3+y^3+z^3}{xyz}\)
<=>\(\frac{x^3+y^3+z^3}{xyz}\ge0=\frac{x^2y+y^2z+z^2x}{xyz}\)( Bước này tách 0 ra cho cùng mẫu )
<=> \(x^3+y^3+z^3\ge x^2y+y^2z+z^2x\)
Áp dụng BĐT TB cộng và TB nhân => \(x^3+y^3+z^3\ge3x^2y\)
Làm 2 BĐT tương tự rồi cộng vào => Đpcm
Do phương trình \(ax^2+bx+c\)vô nghiệm nên ta có:
\(b^2-4ac< 0\)
\(\Leftrightarrow4ac>b^2\)
Mà \(b>a>0\)
\(\Rightarrow c>0\)
Giả sử \(\frac{a+b+c}{b-a}>3\) \(\left(1\right)\)
\(\Leftrightarrow a+b+c>3b-3a\)
\(\Leftrightarrow4a+c>2b\)
Lại có: \(\left(4a+c\right)^2\ge16ac>4b^2\)
\(\Rightarrow4a+c>2b\)
Suy ra (1) đúng.
Vậy \(\frac{a+b+c}{b-a}>3\)
yêu cần đề là j bn