K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Có  \(c=2a+4b\). Ta tính f ( -1 ) và f ( 2 )

\(f\left(-1\right)=a-b+c=a-b+2a+4b=3a+3b=3\left(a+b\right)\)

\(f\left(2\right)=4a+2b+c=4a+2b+2a+4b=6a+6b=6\left(a+b\right)\)

\(\Rightarrow f\left(-1\right).f\left(2\right)=3\left(a+b\right).6\left(a+b\right)=18\left(a+b\right)^2\)

Có \(\left(a+b\right)^2\ge0\forall x\Leftrightarrow18\left(a+b\right)^2\ge0\forall x\left(đpcm\right)\)

22 tháng 2 2020

\(f\left(-1\right)=a\left(-1\right)^2+b.\left(-1\right)+c\)

\(=a-b+c\)

\(f\left(2\right)=a.2^2+b.2+c\)

\(=4a+2b+c\)

\(\Rightarrow f\left(2\right)-2.f\left(-1\right)=\left(4a+2b+c\right)-2\left(a-b+c\right)\)

\(=2a+4b-c=0\)

\(\Rightarrow f\left(2\right)=2.f\left(-1\right)\)

\(\Rightarrow f\left(2\right)\)và \(2.f\left(-1\right)\)cùng dấu

\(\Rightarrow f\left(2\right)\)và \(f\left(-1\right)\)cùng dấu

\(\Rightarrow f\left(2\right).f\left(-1\right)\ge0\)(đpcm)

22 tháng 2 2020

Ta có :\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\)

               \(f\left(2\right)=a.2^2+b.2+c=4a+2b+c\)

\(\implies\) \(f\left(2\right)-2f\left(-1\right)=\left(4a+2b+c\right)-2.\left(a-b+c\right)\)

\(\implies\)  \(f\left(2\right)=2.f\left(-1\right)\)

\(\implies\)  \(f\left(-1\right).f\left(2\right)=f\left(-1\right).2f\left(-1\right)=f\left(-1\right)^2.2\) \(\geq\) \(0\)

\(\implies\)  \(f\left(-1\right).f\left(2\right)\) \(\geq\)  \(0\) \(\left(đpcm\right)\)

16 tháng 1 2016

Toan lop 7 ma sao kho the?!!!!! Minh bo tay!

30 tháng 12 2019

tham khảo thôi nhé ko giống y sì đâu

https://olm.vn/hoi-dap/detail/213882782299.html

2 tháng 2 2021

Theo bài ra ta có : 

\(f\left(3\right)=a.3^2+3b+c=9a+3b+c\)

\(f\left(-2\right)=a\left(-2\right)^2+b\left(-2\right)+c=4a-2b+c\)

hay \(f\left(3\right).f\left(2\right)\ge0\)

\(\Leftrightarrow\left(9a+3b+c\right)\left(4a-2b+c\right)=0\)

Dấu ''='' xảy ra <=> \(a=b=c=0\)( thỏa mãn điều kiện )

22 tháng 2 2019

Ta có:

\(f\left(0\right)=c\in Z\)(1)

\(f\left(1\right)=a+b+c\in Z\)(2)

\(f\left(2\right)=4a+2b+c\in Z\)(3)_

Từ (1), (2) => \(a+b\in Z\)=> \(2a+2b\in Z\)(4)

Từ (1), (3)=> 4a+2b\(\in Z\)(5)

Từ (4), (5) => \(\left(4a+2b\right)-\left(2a+2b\right)\in Z\)

=> \(2a\in Z\)=> \(2b\in Z\)