Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Giải:
Ta có:
\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)
\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)
\(=\left(4a+9a\right)+\left(-2b+3b\right)+\left(c+c\right)\)
\(=13a+b+2c=0\)
\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)
\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)
Vậy \(f\left(-2\right).f\left(3\right)\le0\) (Đpcm)
b) Sửa đề:
Biết \(5a+b+2c=0\)
Giải:
Ta có:
\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a.2^2+b.2+c=4a+2b+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\end{matrix}\right.\)
\(\Rightarrow f\left(2\right)+f\left(-1\right)=\left(a-b+c\right)+\left(4a+2b+c\right)\)
\(=\left(4a+a\right)+\left(-b+2b\right)+\left(c+c\right)\)
\(=5a+b+2c=0\)
\(\Rightarrow f\left(2\right)=-f\left(-1\right)\)
\(\Rightarrow f\left(2\right).f\left(-1\right)=-\left[f\left(-1\right)\right]^2\le0\)
Vậy \(f\left(2\right).f\left(-1\right)\le0\) (Đpcm)

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...

\(f\left(-1\right)=a\left(-1\right)^2+b.\left(-1\right)+c\)
\(=a-b+c\)
\(f\left(2\right)=a.2^2+b.2+c\)
\(=4a+2b+c\)
\(\Rightarrow f\left(2\right)-2.f\left(-1\right)=\left(4a+2b+c\right)-2\left(a-b+c\right)\)
\(=2a+4b-c=0\)
\(\Rightarrow f\left(2\right)=2.f\left(-1\right)\)
\(\Rightarrow f\left(2\right)\)và \(2.f\left(-1\right)\)cùng dấu
\(\Rightarrow f\left(2\right)\)và \(f\left(-1\right)\)cùng dấu
\(\Rightarrow f\left(2\right).f\left(-1\right)\ge0\)(đpcm)
Ta có :\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\)
\(f\left(2\right)=a.2^2+b.2+c=4a+2b+c\)
\(\implies\) \(f\left(2\right)-2f\left(-1\right)=\left(4a+2b+c\right)-2.\left(a-b+c\right)\)
\(\implies\) \(f\left(2\right)=2.f\left(-1\right)\)
\(\implies\) \(f\left(-1\right).f\left(2\right)=f\left(-1\right).2f\left(-1\right)=f\left(-1\right)^2.2\) \(\geq\) \(0\)
\(\implies\) \(f\left(-1\right).f\left(2\right)\) \(\geq\) \(0\) \(\left(đpcm\right)\)

\(f\left(-1\right)=a+c-b\)
\(f\left(3\right)=9a+3b+c=10a+2b+2c+b-a-c=b-a-c\)
\(\Rightarrow f\left(-1\right).f\left(3\right)=\left(a+c-b\right)\left(b-a-c\right)=-\left(a+c-b\right)^2\le0\)


Lời giải:
Ta có:
$f(4)=16a+4b+c$
$f(-2)=4a-2b+c$
Cộng theo vế: $f(4)+f(-2)=20a+2b+2c=2(10a+b+c)=2.0=0$
$\Rightarrow f(-2)=-f(4)$
$\Rightarrow f(4).f(-2)=f(4).-f(4)=-f(4)^2\leq 0$
Ta có đpcm.
đè bài sai rồi kìa