Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(f\left(x\right)=5x^3-7x^2+2x+5\)
\(\Rightarrow f\left(1\right)=5.1^3-7.1^2+2.1+5\)
\(\Rightarrow f\left(1\right)=5.1-7.1+2+5\)
\(\Rightarrow f\left(1\right)=5-7+7\)
\(\Rightarrow f\left(1\right)=5\)
Vậy f(1) = 5.
\(g\left(x\right)=7x^3-7x^2+2x+5\)
\(\Rightarrow g\left(\frac{1}{2}\right)=7.\left(\frac{1}{2}\right)^3-7.\left(\frac{1}{2}\right)^2+2.\frac{1}{2}+5\)
\(\Leftrightarrow g\left(\frac{1}{2}\right)=7.\frac{1}{8}-7.\frac{1}{4}+1+5\)
\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{7}{8}-\frac{14}{8}+6\)
\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{-7}{8}+\frac{48}{8}\)
\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{41}{8}\)
Vậy \(g\left(\frac{1}{2}\right)=\frac{41}{8}\)
\(h\left(x\right)=2x^3+4x+1\)
\(\Rightarrow h\left(0\right)=2.0^3+4.0+1\)
\(\Rightarrow h\left(0\right)=0+0+1\)
\(\Rightarrow h\left(0\right)=1\)
Vậy \(h\left(0\right)=1\)
a) \(f\left(x\right)=5x^3-7x^2+x+7+4x^5\)
\(f\left(-1\right)=5.\left(-1\right)^3-7.\left(-1\right)^2+\left(-1\right)+7+4.\left(-1\right)^5\)
\(f\left(-1\right)=\left(-5\right)-7+\left(-1\right)+7+\left(-4\right)\)
\(f\left(-1\right)=-10\)
\(\Rightarrow f\left(x\right)=-10\)
\(g\left(x\right)=4x^5-3x^3-7x^2+2x+5\)
\(g\left(0\right)=4.0^5-3.0^3-7.0^2+2.0+5\)
\(g\left(0\right)=5\)
\(\Rightarrow g\left(x\right)=0\)
\(h\left(x\right)=x^2-4x-5\)
\(h\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^2-4.\left(-\frac{1}{2}\right)-5\)
\(h\left(-\frac{1}{2}\right)=\frac{1}{4}-\left(-2\right)-5\)
\(h\left(-\frac{1}{2}\right)=-\frac{11}{4}\)
\(\Rightarrow h\left(x\right)=-\frac{11}{4}\)
\(f\left(-1\right)=5\left(-1\right)^3-7\left(-1\right)^2+\left(-1\right)+7+4\left(-1\right)^5\)
\(f\left(-1\right)=-5-7-1+7-4\)
\(f\left(-1\right)=-10\)
\(g\left(0\right)=4.0^5-3.0^3-7.0^2+2.0+5\)
\(g\left(0\right)=0-0-0+0+5\)
\(g\left(0\right)=5\)
\(h\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^2-4\left(-\frac{1}{2}\right)-5\)
\(h\left(-\frac{1}{2}\right)=\frac{1}{4}-\left(-2\right)-5\)
\(h\left(-\frac{1}{2}\right)=\frac{1}{4}+2-5\)
\(h\left(-\frac{1}{2}\right)=-\frac{11}{4}\)
a) Thu gọn, sắp xếp các đa thức theo lũy thừa tăng của biến
= -9 - 2x2 + 3x3 - 6x5 - 3x7
b) Tính -9 - 2x2 + 3x3 - 6x5 - 3x7 ) + (-12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 ) - (2x - 3x2 + 4x3 +4x5 -4x6 - 10x7)
= - 9 - 2x2 + 3x3 - 6x5 - 3x7 -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 - 2x + 3x2 - 4x3 - 4x5 + 4x6 + 10x7
= -21 - 2x + x2 + 2x3 + x4 - 9x5 + 3x6 + x7 - 5x8
a) \(\) Ta có : \(F\left(x\right)=5x^3-7x^2+x+7\)
\(\Rightarrow F\left(-1\right)=5.\left(-1\right)^3-7.\left(-1\right)^2+\left(-1\right)+7\)
\(=\left(-5\right)-7-1+7\)
\(=-6\)
Vậy : \(F\left(-1\right)=-6\)
b) Ta có : \(K\left(x\right)=F\left(x\right)-G\left(x\right)+H\left(x\right)\)
\(\Leftrightarrow K\left(x\right)=5x^3-7x^2+x+7-\left(7x^3-7x^2+2x+5\right)+\left(2x^3+4x+1\right)\)
\(\Leftrightarrow K\left(x\right)=\left(5x^3-7x^3+2x^3\right)+\left(-7x^2+7x^2\right)+\left(x-2x+4x\right)+\left(7-5+1\right)\)
\(\Leftrightarrow K\left(x\right)=3x+3\)
Vậy : \(K\left(x\right)=3x+3\)
c) Ta có : \(K\left(x\right)=3x+3\)
\(\Rightarrow\) Bậc của \(K\left(x\right)\) là 1.
Xét \(K\left(x\right)=0\Leftrightarrow3x+3=0\)
\(\Leftrightarrow3.\left(x+1\right)=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy : nghiệm của đa thức \(K\left(x\right)\) là \(x=-1\)
a) \(F\left(x\right)=5x^3-7x^2+x+7\)
=> \(F\left(-1\right)=5.\left(-1\right)^3-7.\left(-1\right)^2+\left(-1\right)+7\)
\(F\left(-1\right)=\left(-5\right)-7+\left(-1\right)+7\)
\(F\left(-1\right)=\left(-13\right)+7\)
\(F\left(-1\right)=-6.\)
Vậy \(F\left(-1\right)=-6.\)
\(G\left(x\right)=7x^3-7x^2+2x+5\)
=> \(G\left(-\frac{1}{2}\right)=7.\left(-\frac{1}{2}\right)^3-7.\left(-\frac{1}{2}\right)^2+2.\left(-\frac{1}{2}\right)+5\)
\(G\left(-\frac{1}{2}\right)=\left(-\frac{7}{8}\right)-\frac{7}{4}+\left(-1\right)+5\)
\(G\left(-\frac{1}{2}\right)=\left(-\frac{29}{8}\right)+5\)
\(G\left(-\frac{1}{2}\right)=\frac{11}{8}.\)
Vậy \(G\left(-\frac{1}{2}\right)=\frac{11}{8}.\)
\(H\left(x\right)=2x^3+4x+1\)
=> \(H\left(0\right)=2.0^3+4.0+1\)
\(H\left(0\right)=0+0+1\)
\(H\left(0\right)=1.\)
Vậy \(H\left(0\right)=1.\)
Chúc bạn học tốt!
a)f(x)=-x5-7x4-2x3+x2+4x+9
g(x)=x5+7x4+2x3+2x2-3x-9
b)h(x)=f(x)+g(x)
=(-x5-7x4-2x3+x2+4x+9)+(x5+7x4+2x3+2x2-3x-9)
=-x5-7x4-2x3+x2+4x+9+x5+7x4+2x3+2x2-3x-9
=-x5+x5-7x4+7x4-2x3+2x3+x2+2x2+4x-3x+9-9
=3x2+x
Vậy h(x)=3x2+x
c)ta có h(x)=0
=>3x2+x=0
x(3x+1)=0
x=0 hoặc 3x+1=0
x=0 hoặc x=-1/3
vậy nghiệm của đa thức h(x) là x=0 hoặc x=-1/3
a) A(x) = f(x) + g(x) = ( 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 ) + ( 3x^4 + 0,2 - 7x^2 + 5x^3 - 9x )
= 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 + 3x^4 + 0,2 - 7x^2 + 5x^3 - 9x
= ( 2x^3 - 4x^3 + 5x^3 ) + ( 3x - 9x ) + ( 1/2 + 0,2 ) + ( -5x^4 + 3x^4 ) - 7x^2
= 3x^3 - 6x + 0,7 - 2x^4 - 7x^2
B(x) = f(x) - g(x) = ( 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 ) - ( 3x^4 + 0,2 - 7x^2 + 5x^3 - 9x )
= 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 - 3x^4 - 0,2 + 7x^2 - 5x^3 + 9x
= ( 2x^3 - 4x^3 - 5x^3 ) + ( 3x + 9x ) + ( 1/2 - 0,2 ) + ( -5x^4 - 3x^4 ) + 7x^2
= -7x^3 + 12x + 0,3 -8x^4 + 7x^2
Bài 3 :
1. Thay x = -5 vào f(x) ta được :
\(\left(-5\right)^2-4\left(-5\right)+5=50\)
Vậy x = -5 không là nghiệm của đa thức trên .
Bài 2 :
1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)
=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)
=> \(f_{\left(x\right)}=x^2+4\)
=> \(x^2+4=0\)
Vậy đa thức trên vô nghiệm .
2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)
=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)
=> \(g_{\left(x\right)}=0\)
Vậy đa thức trên vô số nghiệm .
3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)
=> \(h_{\left(x\right)}=x^2-x+1\)
=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)
Vậy đa thức vô nghiệm .
Bài 3:
\(f\left(x\right)=x^2+4x-5.\)
+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:
\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)
\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)
\(\Rightarrow f\left(x\right)=25-20-5\)
\(\Rightarrow f\left(x\right)=5-5\)
\(\Rightarrow f\left(x\right)=0.\)
Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)
Chúc bạn học tốt!
f(x) + g(x)
= (x5 - 3x2 + 7x4 - 9x3 + x2 - 1/4x) + (5x4 - x5 +x2 - 2x3 + 3x2 - 1/4)
= x5 - 3x2 + 7x4 - 9x3 + x2 - 1/4x + 5x4 - x5 +x2 - 2x3 + 3x2 - 1/4
=12x4 - 11x3 + 2x2 - 1/4x - 1/4
f(x) - g(x)
= (x5 - 3x2 + 7x4 - 9x3 + x2 - 1/4x) - (5x4 - x5 +x2 - 2x3 + 3x2 - 1/4)
= = x5 - 3x2 + 7x4 - 9x3 + x2 - 1/4x - 5x4 + x5 - x2 + 2x3 - 3x2 + 1/4
= 2x5 + 2x4 - 7x3 - 6x2 - 1/4x + 1/4
\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\\ f\left(x\right)-g\left(x\right)=4x^4-6x^3+7x^2+8x-9\\ \Rightarrow2f\left(x\right)=6x^4-3x^2-5+4x^4-6x^3+7x^2+8x-9\\ 2f\left(x\right)=10x^4-6x^3+4x^2+8x-14\\ 2f\left(x\right)=2\left(5x^4-3x^3+2x^2+4x-7\right)\\ \Rightarrow f\left(x\right)=5x^4-3x^3+2x^2+8x-14\)
\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\\ \Rightarrow g\left(x\right)=6x^4-3x^2-5-f\left(x\right)\\ g\left(x\right)=6x^4-3x^2-5-5x^4+3x^3-2x^2-8x+14\\ g\left(x\right)=x^4+3x^3-5x^2-8x+9\)