\(x^4+ax^3+bx^2+cx+d\) biết \(f\left(1\right)=10;f\left(2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 11 2019

Xét hàm \(g\left(x\right)=f\left(x\right)-10x\)

\(\Rightarrow g\left(1\right)=f\left(1\right)-10.1=10-10=0\)

Tương tự \(g\left(2\right)=0\) ; \(g\left(3\right)=0\)

\(\Rightarrow g\left(x\right)\) luôn có 3 nghiệm \(x=\left\{1;2;3\right\}\)

\(\Rightarrow g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)\) với a là số thực bất kì

\(\Rightarrow f\left(x\right)=g\left(x\right)+10x=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)+10x\)

\(\Rightarrow f\left(12\right)=990\left(12-a\right)+120=12000-990a\)

\(f\left(-8\right)=-990\left(-8-a\right)-80=7840+990a\)

\(\Rightarrow\frac{f\left(12\right)+f\left(-8\right)}{10}+15=\frac{12000-990a+7840+990a}{10}+15=1999\)

16 tháng 3 2020

Theo định lý Bezout ta có:

\(f\left(1\right)=f\left(2\right)=f\left(-3\right)=2;f\left(-2\right)=-10\)

Ta có:

\(f\left(1\right)=a+b+c+d+1=2\)

\(f\left(2\right)=8a+4b+2c+d+16=2\)

\(f\left(-3\right)=-27a+9b-3c+d+81=2\)

\(f\left(-2\right)=-8a+4b-2c+d+16=-10\)

Đến đây bạn dùng Casio fx 580 tìm nghiệm hộ mình nhé !