Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA có \(x^2-4x-9=0\)
<=> \(x^2-4x+4-13=0\)
<=> \(\left(x-2\right)^2-13=0\)
vì \(\left(x-4\right)^2\ge0\left(\forall x\in R\right)\)
Nên \(\left(x-4\right)^2-13\ne0\)
Vậy f(x) vô nghiệm
Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0.
Nếu f(a) = 0 => a là nghiệm của f(x).
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x.
+ Thay x = 0 vào (1) ta được
0.f(0 + 1) = (0 + 2).f(0)
=> 0 = 2.f(0)
=> f(0) = 0
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2)
+ Thay x = -2 vào (1) ta được:
(-2).f(-2 + 1) = (-2 + 2).f(-2)
=> (-2).f(-1) = 0.f(-2)
=> (-2).f(-1) = 0
=> f(-1) = 0
=> x = -1 là 1 nghiệm của đa thức trên (3)
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2
Bài 1
Gợi ý bạn làm : Bạn thay \(x=-4;x=-3;x=0;x=1\) vào \(f\left(x\right);g\left(x\right)\)
\(\Rightarrow\) Nếu kết quả ra giống nhau thì là nghiệm , ra khác nhau thì không là nghiệm
VD : Thay \(x=-4\) vào \(f\left(x\right)\) và \(g\left(x\right)\)
\(f\left(-4\right)=4.\left(-4\right)^4-5\left(-4\right)^3+3.\left(-4\right)+2=1334\)
\(g\left(x\right)=-4.\left(-4\right)^4+5\left(-4\right)^3+7=-1337\)
Ra hai kết quả khác nhau
\(\Rightarrow x=-4\) không là nghiệm
Bài 2
\(f\left(x\right)-g\left(x\right)=\left(-x^5+3x^2+4x+8\right)-\left(-x^5-3x^2+4x+2\right)\\ =-x^5+3x^2+4x+8+x^5+3x^2-4x-2\\ =\left(-x^5+x^5\right)+\left(3x^2+3x^2\right)+\left(4x-4x\right)+\left(8-2\right)\\ =6x^2+6\\ =x^2+1\\ =x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow\) phương trình vô nghiệm
Cho đa thức: \(f\left(x\right)=4x^3+4x^4-x^2+3x^2-3x^4-3x^3\). CMR f(x) chỉ có 1 nghiệm x=0
Giúp hộ!
\(f\left(x\right)=4x^3+4x^4-x^2+3x^2-3x^4-3x^3\)
\(\Leftrightarrow f\left(x\right)=\left(4x^3-3x^3\right)+\left(4x^4-3x^4\right)+\left(-x^2+3x^2\right)\)
\(\Leftrightarrow f\left(x\right)=x^3+x^4+2x^2\)
\(f\left(x\right)=0\)
\(\Leftrightarrow x^3+x^4+2x^2=0\)
\(\Leftrightarrow x^2\left(x+x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+x^2+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+\dfrac{1}{2}x+\dfrac{1}{2}x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{2}>0\forall x\end{matrix}\right.\)
Vậy f(x) chỉ có 1 nghiệm
a, Theo bài ra ta có \(\hept{\begin{cases}f\left(0\right)=c=0\\f\left(1\right)=a+b+c=2013\\f\left(-1\right)=a-b+c=2012\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=2013\\a-b=2012\end{cases}}\)
Cộng vế với vế \(a+b+a-b=2013+2012\Leftrightarrow2a=4025\Leftrightarrow a=\frac{4025}{2}\)
\(\Rightarrow b=\frac{4025}{2}-2012=\frac{1}{2}\)
Vậy \(a=\frac{4025}{2};b=\frac{1}{2};c=0\)
Do x^4 và 4x^2 lớn hơn hoặc bằng 0 vs mọi x => x^4 + 4x^2 + 1 > 0 => đa thức f(x) =..... vô nghiệm
\(f\left(x\right)=x^4+4x^2+1=\left(x^4+4x^2+4\right)-3=\left(x^2+2\right)^2-3\)
Vì \(x^2\ge0\Rightarrow x^2+2\ge0\Rightarrow\left(x^2+2\right)^2\ge4\Rightarrow f\left(x\right)=\left(x^2+2\right)^2-3\ge1>0\)
Vậy f(x) vô nghiệm