K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2019

Câu hỏi của Công Chúa Của Những Vì Sao - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé! Hai bài làm tương tự nhau:)

10 tháng 7 2018

Ta có : 

\(f\left(x\right)-g\left(x\right)=x^{2n}-x^{2n-1}+...+x^2-x+1-\left(-x^{2n+1}+x^{2n}-x^{2n-1}+...+x^2-x+1\right)\)

\(\Rightarrow f\left(x\right)-g\left(x\right)=x^{2n}-x^{2n-1}+...+x^2-x+1+x^{2n+1}-x^{2n}+x^{2n-1}+...-x^2+x-1\)

\(\Rightarrow f\left(x\right)-g\left(x\right)=x^{2n+1}+\left(x^{2n}-x^{2n}\right)+\left(x^{2n-1}-x^{2n-1}\right)+...+\left(x^2-x^2\right)+\left(x-x\right)\)+  ( 1 - 1 ) 

\(\Rightarrow f\left(x\right)-g\left(x\right)=x^{2n+1}\)

Thay \(x=\frac{1}{10}\)vào \(f\left(x\right)-g\left(x\right)\)ta được : 

\(\left(\frac{1}{10}\right)^{2n+1}=\left(\frac{1}{10}\right)^{2n}.\frac{1}{10}=\left(\frac{1^2}{10^2}\right)^n.\frac{1}{10}=\left(\frac{1}{100}\right)^n.\frac{1}{10}=\frac{1}{100^n}.\frac{1}{10}\)

Vậy \(f\left(x\right)-g\left(x\right)=\frac{1}{100^n}.\frac{1}{10}\)

2 tháng 7 2021

Ta có f(x ) - g(x) = x2n - x2n - 1 + ... + x2- x + 1 - (-x2n + 1 + x2n - x2x - 1 + ... + x2 - x + 1)

= x2n + 1

Thay x = 1/10 vào biểu thức => x2n + 1 = \(\left(\frac{1}{10}\right)^{2n+1}=\frac{1}{10^{2n+1}}=\frac{1}{10...0}\left(2n+1\text{ chữ số 0}\right)\)

2 tháng 7 2021

\(f\left(x\right)-g\left(x\right)=x^{2n}-x^{2n-1}+...-x+1-\left(-x^{2n+1}+x^{2n}+...-x+1\right)\)

\(=x^{2n}-x^{2n-1}+...+x^2-x+1+x^{2n+1}-x^{2n}+...+x-1\)

\(=x^{2n+1}+\left(x^{2n}-x^{2n}\right)+...+\left(x-x\right)+\left(1-1\right)\)

\(=x^{2n+1}\)

Thay \(x=\frac{1}{10}\) vào \(f\left(x\right)-g\left(x\right)\) ta được:

\(f\left(x\right)-g\left(x\right)=\left(\frac{1}{10}\right)^{2n+1}=\frac{1}{10^{2n+1}}\)

10 tháng 2 2019

f(-1)=2n+2. g(-1)=2n+1.

f(x)+g(x)=2g(x)-x2n+1.

f(x)-g(x)=-x2n+1

10 tháng 2 2019

mình thay -1 vào thôi bạn:

f(x)=x0+x1+x2+....+x2n+1

(có 2n+2 hạng tử)

f(-1)=1-(-1)+1-(-1)+1-........+1-(-1)

=1+1+1+1+....+1 =2n+1

(có 2n+1) hạng tử

21 tháng 5 2019

( x1p - y1q )2n \(\ge\)0 ; ( x2p - y2q )2n \(\ge\)0 ; ... ; ( xmp - ymq )2n \(\ge\)0

vậy ( x1p - y1q )2n + ( x2p - y2q )2n  + ... + ( xmp - ymq )2n \(\ge\) 0

mà ( x1p - y1q )2n + ( x2p - y2q )2n  + ... + ( xmp - ymq )2n \(\le\)0

suy ra x1p - y1q = x2p - y2q = ... = xmp - ymq = 0

do đó : \(\frac{x_1}{y_1}=\frac{x_2}{y_2}=...=\frac{x_m}{p_m}=\frac{q}{p}\)hay \(\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)

13 tháng 12 2019

Ta có: \(2n\)\(⋮\)\(2\)=> 2n là số chẵn

 \(\Rightarrow\left(x_1p-y_1q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\)\(\left(x_2p-y_2q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\);.... ;  \(\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)

\(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)

Mà \(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\le0\)\(m,n\inℕ^∗\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(x_1p-y_1q\right)^{2n}=0\\......\\\left(x_mp-y_mq\right)^{2n}=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p-y_1q=0\\.....\\x_mp-y_mq=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p=y_1q\\.....\\x_mp=y_mq\end{cases}}\)\(\Rightarrow x_1p+x_2p+....+x_mp=y_1q+y_2q+...+y_mq\)

\(\Rightarrow p\left(x_1+x_2+...+x_m\right)=q\left(y_1+y_2+...+y_m\right)\)

\(\Rightarrow\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)(đpcm)