K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn C

19 tháng 4 2023

em muốn hỏi cách làm ấy ạ? hướng giải là như nào ấy ạ

15 tháng 4 2019

Đáp án B

6 tháng 5 2017

Chọn D

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải:

Bài 1:

Ta nhớ công thức \(\sin^2x=\frac{1-\cos 2x}{2}\). Áp dụng vào bài toán:

\(F(x)=8\int \sin^2\left(x+\frac{\pi}{12}\right)dx=4\int \left [1-\cos \left(2x+\frac{\pi}{6}\right)\right]dx\)

\(\Leftrightarrow F(x)=4\int dx-4\int \cos \left(2x+\frac{\pi}{6}\right)dx=4x-2\int \cos (2x+\frac{\pi}{6})d(2x+\frac{\pi}{6})\)

\(\Leftrightarrow F(x)=4x-2\sin (2x+\frac{\pi}{6})+c\)

Giải thích 1 chút: \(d(2x+\frac{\pi}{6})=(2x+\frac{\pi}{6})'dx=2dx\)

\(F(0)=8\Rightarrow -1+c=8\Rightarrow c=9\)

\(\Rightarrow F(x)=4x-2\sin (2x+\frac{\pi}{6})+9\)

Câu 2:

Áp dụng nguyên hàm từng phần như bài bạn đã đăng:

\(\Rightarrow F(x)=-xe^{-x}-e^{-x}+c\)

\(F(0)=1\Rightarrow -1+c=1\Rightarrow c=2\)

\(\Rightarrow F(x)=-e^{-x}(x+1)+2\), tức B là đáp án đúng

18 tháng 6 2019

Đáp án C

29 tháng 7 2019

Đáp án C.

11 tháng 12 2019

Chọn đáp án A

.

.

NV
5 tháng 3 2023

\(\int e^2dx=e^2.x+C\)

5 tháng 3 2023

C. f(x) = \(e^2\)x+C

29 tháng 1 2019

Đáp án: C.

Vì lnC mới là số thực tùy ý, D sai vì không cộng hằng số C vào biến.

8 tháng 7 2018

Đáp án: C.

Vì lnC mới là số thực tùy ý, D sai vì không cộng hằng số C vào biến.