Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)+g\left(x\right)=-x\left[f'\left(x\right)+g'\left(x\right)\right]\)
Đặt \(h\left(x\right)=f\left(x\right)+g\left(x\right)\Rightarrow\left\{{}\begin{matrix}h\left(1\right)=4\\h\left(x\right)=-x.h'\left(x\right)\end{matrix}\right.\)
\(\Rightarrow\frac{h'\left(x\right)}{h\left(x\right)}=-\frac{1}{x}\Rightarrow\int\frac{h'\left(x\right)}{h\left(x\right)}dx=-\int\frac{dx}{x}=-lnx\)
\(\Rightarrow ln\left[h\left(x\right)\right]=ln\left(\frac{1}{x}\right)+C\)
Thay \(x=1\Rightarrow C=ln4\Rightarrow ln\left[h\left(x\right)\right]=ln\left(\frac{1}{x}\right)+ln4=ln\left(\frac{4}{x}\right)\)
\(\Rightarrow h\left(x\right)=\frac{4}{x}\)
\(\Rightarrow I=\int\limits^4_1h\left(x\right)dx=\int\limits^4_1\frac{4}{x}dx=...\)
cho em hỏi tại sao h(x) =\(\frac{4}{x}\) mà ko phải là |h(x)| vậy ạ?
\(f\left(x\right)-\left(x+1\right)f'\left(x\right)=2x.f^2\left(x\right)\)
\(\Rightarrow\dfrac{f\left(x\right)-\left(x+1\right)f'\left(x\right)}{f^2\left(x\right)}=2x\)
\(\Rightarrow\left[\dfrac{x+1}{f\left(x\right)}\right]'=2x\)
Lấy nguyên hàm 2 vế:
\(\dfrac{x+1}{f\left(x\right)}=\int2xdx=x^2+C\)
Thay \(x=1\Rightarrow\dfrac{2}{f\left(1\right)}=1+C\Rightarrow C=0\)
\(\Rightarrow f\left(x\right)=\dfrac{x+1}{x^2}\Rightarrow\int\limits^2_1\left(\dfrac{1}{x}+\dfrac{1}{x^2}\right)dx=\left(lnx-\dfrac{1}{x}\right)|^2_1=ln2+\dfrac{1}{2}\)
\(h\left(x\right)=f\left(x^2+1\right)-m\Rightarrow h'\left(x\right)=2x.f'\left(x^2+1\right)\)
\(h'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\f'\left(x^2+1\right)=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x^2+1=2\\x^2+1=5\end{matrix}\right.\) \(\Rightarrow x=\left\{-2;-1;0;1;2\right\}\)
Hàm có nhiều cực trị nhất khi \(h\left(x\right)=m\) có nhiều nghiệm nhất
\(f\left(x\right)=\int f\left(x\right)dx=\dfrac{1}{4}x^4-\dfrac{5}{3}x^3-2x^2+20x+C\)
\(f\left(1\right)=0\Rightarrow C=-\dfrac{199}{12}\Rightarrow f\left(x\right)=-\dfrac{1}{4}x^4-\dfrac{5}{3}x^3-2x^2+20x-\dfrac{199}{12}\)
\(x=\pm2\Rightarrow x^2+1=5\Rightarrow f\left(5\right)\approx-18,6\)
\(x=\pm1\Rightarrow x^2+1=2\Rightarrow f\left(2\right)\approx6,1\)
\(x=0\Rightarrow x^2+1=1\Rightarrow f\left(1\right)=0\)
Từ đó ta phác thảo BBT của \(f\left(x^2+1\right)\) có dạng:
Từ đó ta dễ dàng thấy được pt \(f\left(x^2+1\right)=m\) có nhiều nghiệm nhất khi \(0< m< 6,1\)
\(\Rightarrow\) Có 6 giá trị nguyên của m
Đang học Lý mà thấy bài nguyên hàm hay hay nên nhảy vô luôn :b
\(I_1=\int\limits^1_0xf\left(x\right)dx\)
\(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=xdx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=\dfrac{1}{2}x^2\end{matrix}\right.\)
\(\Rightarrow\int xf\left(x\right)dx=\dfrac{1}{2}x^2f\left(x\right)-\dfrac{1}{2}\int x^2f'\left(x\right)dx\)
\(\Rightarrow\int\limits^1_0xf\left(x\right)dx=\dfrac{1}{2}x^2|^1_0-\dfrac{1}{2}\int\limits^1_0x^2f'\left(x\right)dx=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{1}{2}\int\limits^1_0\left[f'\left(x\right)\right]^2dx=\dfrac{3}{10}\Rightarrow\int\limits^1_0x^2f'\left(x\right)dx=\dfrac{3}{5}\)
Đoạn này hơi rối xíu, ông để ý kỹ nhé, nhận thấy ta có 2 dữ kiện đã biết, là: \(\int\limits^1_0\left[f'\left(x\right)\right]^2dx=\dfrac{9}{5}and\int\limits^1_0x^2f'\left(x\right)dx=\dfrac{3}{5}\) có gì đó liên quan đến hằng đẳng thức, nên ta sẽ sử dụng luôn
\(\int\limits^1_0\left[f'\left(x\right)+tx^2\right]^2dx=0\)
\(\Leftrightarrow\int\limits^1_0\left[f'\left(x\right)\right]^2dx+2t\int\limits^1_0x^2f'\left(x\right)dx+t^2\int\limits^1_0x^4dx=0\)
\(\Leftrightarrow\dfrac{9}{5}+\dfrac{6}{5}t+\dfrac{1}{5}t^2=0\) \(\left(\int\limits^1_0x^4dx=\dfrac{1}{5}x^5|^1_0=\dfrac{1}{5}\right)\)\(\)\(\Leftrightarrow t=-3\Rightarrow\int\limits^1_0\left[f'\left(x\right)-3x^2\right]^2dx=0\)
\(\Leftrightarrow f'\left(x\right)=3x^2\Leftrightarrow f\left(x\right)=x^3+C\)
\(\Rightarrow\int\limits^1_0f\left(x\right)dx=\int\limits^1_0x^3dx=\dfrac{1}{4}x^4|^1_0=\dfrac{1}{4}\)
P/s: Có gì ko hiểu hỏi mình nhé !
\(f\left(0\right)=-1\Rightarrow f'\left(0\right)+2=0\Leftrightarrow f'\left(0\right)=-2\)
\(\int\limits^1_0f\left(x\right)dx=\int\limits^1_0\dfrac{f'\left(x\right)-x.e^{3x}}{2}dx=\dfrac{1}{2}\int\limits^1_0f'\left(x\right)dx-\dfrac{1}{2}\int\limits^1_0x.e^{3x}dx=\dfrac{1}{2}f\left(x\right)|^1_0-\dfrac{1}{2}\int\limits^1_0xe^{3x}dx\)
\(I_1=\int xe^{3x}dx\)
\(\left\{{}\begin{matrix}u=x\\dv=e^{3x}dx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=dx\\v=\dfrac{1}{3}e^{3x}\end{matrix}\right.\)
\(\Rightarrow I_1=\dfrac{1}{3}xe^{3x}-\dfrac{1}{3}\int e^{3x}dx=\dfrac{1}{3}xe^{3x}-\dfrac{1}{9}e^{3x}\)
\(\Rightarrow I=\dfrac{1}{2}f\left(1\right)-\dfrac{1}{2}f\left(0\right)-\dfrac{1}{2}\left(\dfrac{1}{3}xe^{3x}-\dfrac{1}{9}e^{3x}\right)|^1_0\)
Èo, tắc chỗ f(1) rồi, vậy đành phải biến đổi để tìm f(x) luôn vậy, hmm
Thử nhân 2 vế với \(e^{2x}\) xem nào:
\(e^{2x}f'\left(x\right)-2e^{2x}f\left(x\right)=x.e^{5x}\Leftrightarrow\left(e^{2x}.f\left(x\right)\right)'=x.e^{5x}\)
Lay nguyen ham 2 ve:
\(e^{2x}.f\left(x\right)=\int x.e^{5x}dx\)
\(\left\{{}\begin{matrix}x=u\\dv=e^{5x}dx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}dx=du\\v=\dfrac{1}{5}e^{5x}\end{matrix}\right.\)
\(\Rightarrow e^{2x}.f\left(x\right)=\int x.e^{5x}dx=\dfrac{1}{5}x.e^{5x}-\dfrac{1}{5}\int e^{5x}dx=\dfrac{1}{5}xe^{5x}-\dfrac{1}{25}e^{5x}+C\)
\(f\left(0\right)=-1\Leftrightarrow f\left(0\right)=-\dfrac{1}{25}+C=-1\Leftrightarrow C=-\dfrac{24}{25}\)
\(\Rightarrow f\left(x\right)=\dfrac{\dfrac{1}{5}xe^{5x}-\dfrac{1}{25}e^{5x}-\dfrac{24}{25}}{e^{2x}}\)
Vậy là xong rồi \(\Rightarrow f\left(1\right)=...\) , thay vô \(I=\dfrac{1}{2}f\left(1\right)-\dfrac{1}{2}.\left(-1\right)-\dfrac{1}{2}\left(\dfrac{1}{3}xe^{3x}-\dfrac{1}{9}e^{3x}\right)|^1_0\) là được nha :)
Nguyên tắc:
\(g\left(x\right).f'\left(x\right)+h\left(x\right).f\left(x\right)=p\left(x\right)\)
Đầu tiên luôn biến đổi để \(f'\left(x\right)\) đứng riêng biệt 1 mình:
\(\Rightarrow f'\left(x\right)+\dfrac{h\left(x\right)}{g\left(x\right)}.f\left(x\right)=\dfrac{p\left(x\right)}{g\left(x\right)}\) (1)
Cần thêm/bớt, nhân/chia sao cho biến về dạng:
\(\left[u\left(x\right).f\left(x\right)\right]'=q\left(x\right)\)
\(\Leftrightarrow f'\left(x\right).u\left(x\right)+u'\left(x\right).f\left(x\right)=q\left(x\right)\)
\(\Leftrightarrow f'\left(x\right)+\dfrac{u'\left(x\right)}{u\left(x\right)}.f\left(x\right)=\dfrac{q\left(x\right)}{u\left(x\right)}\)
Chỉ quan tâm vế trái, khi đó ta sẽ thấy hàm đằng trước \(f\left(x\right)\) chính là \(\dfrac{u'\left(x\right)}{u\left(x\right)}\)
Đồng nhất \(\Rightarrow\dfrac{u'\left(x\right)}{u\left(x\right)}=-2\)
Lấy nguyên hàm 2 vế \(\Rightarrow ln\left|u\left(x\right)\right|=-2x\Rightarrow u\left(x\right)=e^{-2x}\)
Do đó, ở bài toán ban đầu ta cần nhân 2 vế của (1) với \(u\left(x\right)=e^{-2x}\) nghĩa là:
\(f'\left(x\right)-2f\left(x\right)=x.e^{3x}\Leftrightarrow e^{-2x}.f'\left(x\right)-2e^{-2x}.f\left(x\right)=x.e^x\)
\(\Leftrightarrow\left[e^{-2x}.f\left(x\right)\right]'=x.e^x\)
Nguyên hàm 2 vế: \(\Rightarrow e^{-2x}.f\left(x\right)=\left(x-1\right)e^x+C\)
Thay \(x=0\Rightarrow1.f\left(0\right)=-1+C\Rightarrow C=0\)
\(\Rightarrow e^{-2x}.f\left(x\right)=\left(x-1\right)e^x\Rightarrow f\left(x\right)=\left(x-1\right)e^{3x}\)
\(\Rightarrow I=\int\limits^1_0\left(x-1\right)e^{3x}dx=...\)
Bạn coi lại đề bài, có gì đó không ổn
Thay \(x=1\) vào \(g\left(x\right)=-x.f\left(x\right)\) \(\Rightarrow g\left(1\right)=-f\left(1\right)\)
\(\Rightarrow f\left(1\right)+g\left(1\right)=0\) trái với điều kiện \(f\left(1\right)+g\left(1\right)=4\)????
dạ em viết nhầm, phải là g(x)=-xf'(x) f(x)=-xg'(x) mới đúng