Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
$f(1)=a+b+c$
$f(-2)=4a-2b+c$
$\Rightarrow 2f(-2)+3f(1)=2(4a-2b+c)+3(a+b+c)=11a-b+5c=0$
$\Rightarrow f(-2)=\frac{-3}{2}f(1)$
Vì $\frac{-3}{2}<0$ nên $f(-2)$ và $f(1)$ không thể cùng dấu.
thực chất phép tính này chưa được thu gọ nó giống như phsp toaasn cấp 1 vậy nó được tách nhánh ra nhưng số chúng vẫn giống nhau nên chỉ cần thu gọn đa thức này vào rồi sau đó thay x = 2018 vô là xong
a)
Có : \(f\left(x\right)=x^6-2019x^5+2019x^4-...-2019x+1\)
\(=x^6-\left(2018+1\right)x^5+\left(2018+1\right)x^4-...-\left(2018+1\right)x+1\)
\(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-...-\left(x+1\right)x+1\)
\(=x^6-\left(x^6+x^5\right)+\left(x^5+x^4\right)-...-\left(x^2+x\right)+1\)
\(=x^6-x^6-x^5+x^5+x^4-...-x^2-x+1\)
\(=-x+1\)
- Thay \(x=2018\)vào đa thức \(f\left(x\right)\)ta được:
\(f\left(2018\right)=-2018+1=-2017\)
Vậy \(f\left(2018\right)=-2017\)
tham khảo thôi nhé ko giống y sì đâu
https://olm.vn/hoi-dap/detail/213882782299.html
*f(0) nguyên suy ra 0+0+c=c nguyên
*Vì c nguyên và f(1)=a+b+c nguyên suy ra a+b nguyên
*Tương tự vs f(2)=4a+2b+c suy ra 2a nguyên (Vì 4a+2b và 2(a+b) đều nguyên)
Vì 2a và 2(a+b) nguyên suy ra 2b nguyên (đpcm)
\(f\left(1\right)\cdot f\left(-2\right)\)
\(=\left(a+b+c\right)\left(4a-2b+c\right)\)
\(=\left(a+11a+5c+c\right)\left(4a-22a-10c+c\right)\)
\(=\left(12a+6c\right)\left(-18a-9c\right)\)
\(=6\left(2a+c\right)\cdot\left(-9\right)\left(2a+c\right)\)
\(=-54\left(2a+c\right)^2< =0\)(luôn đúng)
f(1)⋅f(−2)
=(�+�+�)(4�−2�+�)=(a+b+c)(4a−2b+c)
=(�+11�+5�+�)(4�−22�−10�+�)=(a+11a+5c+c)(4a−22a−10c+c)
=(12�+6�)(−18�−9�)=(12a+6c)(−18a−9c)
=6(2�+�)⋅(−9)(2�+�)=6(2a+c)⋅(−9)(2a+c)
=−54(2�+�)2<=0=−54(2a+c)2<=0