K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2016

Giả sử f(0), f(1), f(2) có giá trị nguyên là m,n,p. Theo đề bài ta có

\(1\hept{\begin{cases}c=m\left(1\right)\\a+b+c=n\left(2\right)\\4a+2b+c=p\left(3\right)\end{cases}}\)

Ta lấy (3) - 2(2) + (1) vế theo vế ta được

2a = p - 2n + m

=> 2a là số nguyên

Ta lấy 4(2) - (3) - 3(1) vế theo vế ta được

2b = 4n - p - 3m

=> 2b cũng là số nguyên

12 tháng 7 2021

¿¿¿¿¿¿¿¿

 

NV
18 tháng 8 2021

\(F\left(x\right)-F\left(x-1\right)=x\)

\(\Leftrightarrow ax^2+bx-a\left(x-1\right)^2-b\left(x-1\right)=x\)

\(\Leftrightarrow2ax-a+b=x\)

Đồng nhất hệ số 2 vế:

\(\Rightarrow\left\{{}\begin{matrix}2a=1\\-a+b=0\end{matrix}\right.\) \(\Rightarrow a=b=\dfrac{1}{2}\)

19 tháng 8 2021

Em cám ơn ah

30 tháng 11 2016

Ta có:

\(f\left(1\right)=0=1^3+a.1^2+b.1+c=a+b+c+1\Rightarrow a+b+c=-1\left(1\right)\)

\(f\left(2\right)=0=2^3+a.2^2+b.2+c=8+4a+2b+c\Rightarrow4a+2b+c=-8\left(2\right)\)

Lấy \(\left(2\right)-\left(1\right)\Rightarrow3a+b=-7\)

Mà ta có \(a+b=-16\Rightarrow2a-16=-7\Rightarrow2a=9\Rightarrow a=4,5\)

5 tháng 10 2017

b) Ta có:

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}\) ( tính chất dãy tỉ số bằng nhau)

\(=\frac{2a+2b+2c}{a+b+c}=2\)

\(\Rightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)

Ta có:

\(b+c=2a\)

\(\Rightarrow2b+2c=4a\)

Mà 2c=a+b

\(\Rightarrow\)2b+a+b=4a

\(\Rightarrow3b=3a\)

\(\Rightarrow a=b\)

Chứng minh tương tự:b=c;a=c

Thay vào biểu thức:

\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=2\times2\times2=8\)8

2 tháng 7 2015

bạn xem lại đề cho  f(x)