Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử f(0), f(1), f(2) có giá trị nguyên là m,n,p. Theo đề bài ta có
\(1\hept{\begin{cases}c=m\left(1\right)\\a+b+c=n\left(2\right)\\4a+2b+c=p\left(3\right)\end{cases}}\)
Ta lấy (3) - 2(2) + (1) vế theo vế ta được
2a = p - 2n + m
=> 2a là số nguyên
Ta lấy 4(2) - (3) - 3(1) vế theo vế ta được
2b = 4n - p - 3m
=> 2b cũng là số nguyên
\(F\left(x\right)-F\left(x-1\right)=x\)
\(\Leftrightarrow ax^2+bx-a\left(x-1\right)^2-b\left(x-1\right)=x\)
\(\Leftrightarrow2ax-a+b=x\)
Đồng nhất hệ số 2 vế:
\(\Rightarrow\left\{{}\begin{matrix}2a=1\\-a+b=0\end{matrix}\right.\) \(\Rightarrow a=b=\dfrac{1}{2}\)
Ta có:
\(f\left(1\right)=0=1^3+a.1^2+b.1+c=a+b+c+1\Rightarrow a+b+c=-1\left(1\right)\)
\(f\left(2\right)=0=2^3+a.2^2+b.2+c=8+4a+2b+c\Rightarrow4a+2b+c=-8\left(2\right)\)
Lấy \(\left(2\right)-\left(1\right)\Rightarrow3a+b=-7\)
Mà ta có \(a+b=-16\Rightarrow2a-16=-7\Rightarrow2a=9\Rightarrow a=4,5\)
b) Ta có:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}\) ( tính chất dãy tỉ số bằng nhau)
\(=\frac{2a+2b+2c}{a+b+c}=2\)
\(\Rightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)
Ta có:
\(b+c=2a\)
\(\Rightarrow2b+2c=4a\)
Mà 2c=a+b
\(\Rightarrow\)2b+a+b=4a
\(\Rightarrow3b=3a\)
\(\Rightarrow a=b\)
Chứng minh tương tự:b=c;a=c
Thay vào biểu thức:
\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=2\times2\times2=8\)8