K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2017

Áp dụng tính chất dãy tỉ số bằng nhau, ta được :

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+1+x+z+1+x+y-2}=x+y+z\)

Hay \(x+y+z=\frac{1}{2}\)

Thay vào được \(\frac{x}{\frac{1}{2}-x+1}=\frac{1}{2}\) \(\Leftrightarrow x=\frac{1}{2}\)

\(\frac{y}{\frac{1}{2}+1-y}=\frac{1}{2}\Rightarrow y=\frac{1}{2}\)

\(\frac{z}{\frac{1}{2}-2-z}=\frac{1}{2}\Rightarrow z=-\frac{1}{2}\)

Vậy y = 1/2

1 tháng 5 2015

Dùng tính chất tỉ lệ thức: \(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{e}{f}\)=\(\frac{a+b+c}{b+d+f}\) ( Có b+d+f \(\ne\)0 )

* Trước tiên ta xét trường hợp x+y+z=0 có:

\(\frac{x}{y+z+1}\)=\(\frac{y}{x+z+1}\)=\(\frac{z}{x+y-2}\)=0    =>x=y=z=0

* Xét x+y+z=0,tính chất tỉ lệ thức:

x+y+z=\(\frac{x}{y+z+1}\)=\(\frac{y}{x+z+1}\)=\(\frac{z}{x+y-2}\)=\(\frac{x+y+z}{2x+2y+2z}\)=\(\frac{1}{2}\)

=>x+y+z=\(\frac{1}{2}\) Và 2x=y+z+1=\(\frac{1}{2}\)-x+1=>x=\(\frac{1}{2}\)

                         2y=x+z+1=\(\frac{1}{2}\)-y+1=>y=\(\frac{1}{2}\)

                          z=\(\frac{1}{2}\)-(x+y)=\(\frac{1}{2}\)-1=\(\frac{-1}{2}\)

Vậy có cặp (x,y,z) thỏa mãn:(\(\frac{1}{2}\),\(\frac{1}{2}\),\(\frac{-1}{2}\))

13 tháng 1 2017

 x = 5

y = 7

z = 14

3 tháng 2 2017

x;y;z có 2 giá trị: \(x=\frac{1}{2};y=\frac{1}{2};z=\frac{-1}{2}\) và \(x=0;y=0;z=0\)

12 tháng 11 2016

xin lỗi, chỉ có 1 trg hợp thôi

 

13 tháng 11 2016

hình như bạn chép sai đề thì phải

25 tháng 2 2019

Với \(x+y+z=0\) \(\Rightarrow x=y=z=0\) (trái với đk đề bài)

Với \(x+y+z\ne0\),áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{cases}}\)

Mà x+y+z=1/2. Thay vào tìm đc x;y;z =]]

27 tháng 1 2016

Bạn xem lại đề hộ mình. Hình như có vấn đề. 

 

31 tháng 7 2020

ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+x}{z}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

\(\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

31 tháng 7 2020

a,Sử dụng tính chất của dãy tỉ số bằng nhau

 \(\frac{x+y+2020}{z}=\frac{y+z-2021}{x}=\frac{z+x+1}{y}=\frac{x+y+y+z+z+x}{x+y+z}=2\)

\(< =>\frac{2}{x+y+z}=2< =>x+y+z=1\)

28 tháng 9 2017

Áp dụng tính chất tỉ lệ thức, ta có:

\(\frac{y+z-x}{x}+\frac{z+x-y}{y}+\frac{x+y-z}{2}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow y+z-x=x;z+x-y=y;x+y-z=z\)

Do đó ta có:

\(1+\frac{x}{y}=\frac{z+x-y}{y}+\frac{y+z-x}{y}=\frac{2z}{y}\)

Tương tự ta có:

\(1+\frac{y}{z}=\frac{2x}{z}\)và \(1+\frac{z}{x}=\frac{2y}{x}\)

Do đó biểu thức sẽ bằng:

\(\frac{2x}{z}.\frac{2y}{x}.\frac{2z}{y}=\frac{8xyz}{xyz}=8\)

28 tháng 9 2017

Áp dụng tính chất tỉ lệ thức có:

(y+z-x)/x + (z+x-y)/y + (x+y-z)/z= (y+z-x+z+x-y+x+y-z)/(x+y+z)= (x+y+z)/(x+y+z)=1

=>y+z-x=x ; z+x-y=y và x+y-z=z

Do đó ta có:

(1 + x/y)= [(z+x-y)/y + (y+z-x)/y] =2z/y

Tương tự có:

1 + y/z=2x/z và 1 + z/x =2y/x

Do đó biểu thức sẽ bằng :

2x/z . 2y/x . 2z/y = 8xyz/xyz =8

20 tháng 8 2020

Ez

ta có \(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{x}{z}\right)\)

\(\Leftrightarrow A=\left(\frac{y}{y}+\frac{x}{y}\right)\left(\frac{z}{z}+\frac{y}{z}\right)\left(\frac{x}{x}+\frac{z}{x}\right)\)

\(\Leftrightarrow A=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\left(1\right)\)

theo giả thiết \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Leftrightarrow\frac{y+z}{x}-\frac{x}{x}=\frac{z+x}{y}-\frac{y}{y}=\frac{x+y}{z}-\frac{z}{z}\)

\(\Leftrightarrow\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

\(\Leftrightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)

theo tính chất dãy tỉ số bằng nhau

\(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{2x+2y+2z}{x+y+z}=\frac{2\left(x+y+z\right)}{\left(x+y+z\right)}=2\)

\(\left\{{}\begin{matrix}\frac{y+z}{x}=2\Leftrightarrow y+z=2x\left(2\right)\\\frac{z+x}{y}=2\Leftrightarrow z+x=2y\left(3\right)\\\frac{x+y}{z}=2\Leftrightarrow x+y=2z\left(4\right)\end{matrix}\right.\)

thay (2); (3); (4) vào (1)

\(\Leftrightarrow A=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{2z.2x.2y}{xyz}=\frac{2^3\left(xyz\right)}{\left(xyz\right)}=2^3=8\)