K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau do đã có \(y+z+t\ne0\), sau đó nhân dãy đã cho vs nhau. cái kia mũ 3 lên

5 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}=\left(\frac{x+y+z}{y+z+t}\right)^3=\frac{x+y+z}{y+z+t}=\frac{x-y+z}{y-z+t}=\frac{x+y-z}{y+z-t}\)

=> \(\frac{x+y+z}{y+z+t}=\frac{x}{t}\) (1)

=> \(\frac{x-y+z}{y-z+t}=\frac{x}{t}\) (2)

=> \(\frac{x+y-z}{y+z-t}=\frac{x}{t}\) (3)

Từ (1);(2) và (3) => đpcm

5 tháng 11 2017

Đặt \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{t}=k\)

=>\(x=yk;y=kz;z=kt\)

Ta có: \(\left(\dfrac{x+y+z}{y+z+t}\right)^3\)

\(=\left(\dfrac{yk+kz+kt}{y+z+t}\right)^3=\left(\dfrac{k\left(y+z+t\right)}{y+z+t}\right)^3=k^3\left(1\right)\)

Ta có: \(\dfrac{x}{t}=\dfrac{yk}{t}=\dfrac{k^2z}{t}=\dfrac{k^3t}{t}=k^3\left(2\right)\)

Từ (1) và (2) suy ra \(\left(\dfrac{x+y+z}{y+z+t}\right)^3=\dfrac{x}{t}\)

Vậy \(\left(\dfrac{x+y+z}{y+z+t}\right)^3=\dfrac{x}{t}\)

Cho mk 1 like nhé ^_^

21 tháng 9 2018

Ta có:

\(\frac{y+z+t}{x}=\frac{z+t+x}{y}=\frac{t+x+y}{z}=\frac{x+y+z}{t}\)

\(=\frac{2\left(x+y+z+t\right)}{x+y+z+t}\left(tcdtsbn\right)\)=2

\(\Rightarrow y+z+t=2x;z+t+x=2y;\)

\(t+x+y=2z;x+y+z=2t\)

Tu do de CM x=y=z=t

Khi do 

\(A=1+1+1+1=4\)

21 tháng 9 2018

Xet \(x+y+z+t=0\)

\(\Rightarrow A=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=-1-1-1-1=-4\)

Xet \(x+y+z+t\ne0\)

\(\Rightarrow\frac{y+z+t}{x}=\frac{z+t+x}{y}=\frac{t+x+y}{z}=\frac{x+y+z}{t}=\frac{3\left(x+y+z+t\right)}{x+y+z+t}=3\)

\(\Rightarrow x=y=z=t\ne0\)

\(\Rightarrow A=4\) 

6 tháng 8 2020

Ta có 

\(\frac{x+y}{x+y+z}>\frac{x+y}{x+y+z+t};\frac{y+z}{y+z+t}>\frac{y+z}{x+y+z+t};\frac{z+t}{z+t+x}>\frac{z+t}{x+y+z+t};\frac{t+x}{t+x+y}>\frac{t+x}{x+y+z+t}\)

\(\Rightarrow LHS>2\) ( điều phải chứng minh )

23 tháng 11 2019

\(\Rightarrow\left\{{}\begin{matrix}A=4\\A=-4\end{matrix}\right.\)

Vậy biểu thức A luôn có giá trị nguyên (đpcm).

Chúc bạn học tốt!

19 tháng 3 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

Do đó : 

\(\frac{y+z-x}{x}=1\)\(\Rightarrow\)\(2x=y+z\)

\(\frac{z+x-y}{y}=1\)\(\Rightarrow\)\(2y=x+z\)

\(\frac{x+y-z}{z}=1\)\(\Rightarrow\)\(2z=x+y\)

Suy ra : 

\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{x}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)

Vậy \(P=8\)

Đề hơi sai 

16 tháng 12 2018

Ta có:  (đk: x,y,z,t > 0)

 \(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)

Vậy \(M>1^{\left(đpcm\right)}\)

8 tháng 7 2019

Chứng minh cái gì ???

8 tháng 7 2019

M không là số tự nhiên