K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2019

Ta có \(x^4+x^2+1=x^4+2x^2+1-x^2\)

\(=\left(x^2+1\right)-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)

\(\Rightarrow\frac{x^2}{x^4+x^2+1}=\frac{x^2}{\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

\(=a\cdot\frac{x}{x^2+x+1}=\frac{ax}{x^2-x+1+2x}=\frac{ax}{a+2x}\)

(ko biết có đúng ko nữa..)

9 tháng 8 2019

tổng 2 số là 150, tổng của 1/6 số này và 1/9 số kia = 18. Tìm 2 số đó

1 tháng 7 2016

Ta có: \(\left(x^2-\frac{1}{x^2}\right):\left(x^2+\frac{1}{x^2}\right)=a=>\left(\frac{x^4-1}{x^2}\right):\left(\frac{x^4+1}{x^2}\right)=a\)

\(=>\frac{x^4-1}{x^2}.\frac{x^2}{x^4+1}=a=>\frac{x^4-1}{x^4+1}=a=>x^4-1=a\left(x^4+1\right)=ax^4+a\)

\(=>x^4-ax^4=a+1=>x^4=\frac{a+1}{1-a}\)

Thay vào M,ta có:

\(M=\left(x^4-\frac{1}{x^4}\right):\left(x^4+\frac{1}{x^4}\right)=\left(\frac{a+1}{1-a}-\frac{1}{\frac{a+1}{1-a}}\right):\left(\frac{a+1}{1-a}+\frac{1}{\frac{a+1}{1-a}}\right)\)

\(=\left(\frac{a+1}{1-a}-\frac{1-a}{a+1}\right):\left(\frac{a+1}{1-a}+\frac{1-a}{a+1}\right)=\frac{\left(a+1\right)^2-\left(1-a\right)^2}{\left(1-a\right)\left(a+1\right)}:\frac{\left(a+1\right)^2+\left(1-a\right)^2}{\left(1-a\right)\left(a+1\right)}\)

\(=\frac{\left(a+1\right)^2-\left(1-a\right)^2}{\left(1-a\right)\left(a+1\right)}.\frac{\left(1-a\right)\left(a+1\right)}{\left(a+1\right)^2+\left(1-a\right)^2}=\frac{\left(a+1\right)^2-\left(1-a\right)^2}{\left(a+1\right)^2+\left(1-a\right)^2}\)

\(=\frac{a^2+2a+1-\left(1-2a+a^2\right)}{a^2+2a+1+1-2a+a^2}=\frac{a^2+2a+1-1+2a-a^2}{a^2+2a+1+1-2a+a^2}=\frac{4a}{2a^2+2}=\frac{2.2a}{2.\left(a^2+1\right)}=\frac{2a}{a^2+1}\)

Vậy \(M=\frac{2a}{a^2+1}\)

2 tháng 7 2016

Làm hộ mk, phân tích đa thức thành nhân tử

a^4   b^4   c^4 - 2*a^2*b^2 - 2*b^2*c^2 - 2*c^2*a^2