Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có\(x\sqrt{\frac{\left(2015+y^2\right)\left(2015+z^2\right)}{2015+x^2}}=x\sqrt{\frac{\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}{xy+yz+zx+x^2}}\)
\(=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)
Tương tự:\(y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}=yx+yz\)
\(z\sqrt{\frac{\left(2015+x^2\right)\left(2015+y^2\right)}{2015+z^2}}=zx+zy\)
Ta có :\(P=xy+xz+yx+yz+zx+zy=2\left(xy+yz+zx\right)=4030\)
=>P không phải là số chính phương
Có \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2015}\)
<=> \(\frac{x+y}{xy}=\frac{1}{2015}=>xy=2015\left(x+y\right)\)
Có P2=\(\frac{x+y}{x-2015+y-2015+2\sqrt{xy-2015\left(x+y\right)+2015^2}}\) =\(\frac{x+y}{\left(x+y\right)-4030+2\sqrt{xy-xy+2015^2}}\)( vì 2015(x+y)=xy)
= \(\frac{x+y}{x+y-4030+2\sqrt{2015^2}}=\frac{x+y}{x+y-4030+2.2015}=\frac{x+y}{x+y}\)=1
=> P=1(vì P>0)
Từ giả thuyết ta đc x+y=0 thì =>x^2015+y^2015=(x+y)(...)=0
cái đoạn x+y=0 bạn xem mấy bài đăng khác ấy!:>>
c/ ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x-3}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}\right)-\left(\sqrt{\left(x-1\right)\left(x+3\right)}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}-\sqrt{x+3}=0\\\sqrt{x-1}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2< 3\left(ktm\right)\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
\((x + \sqrt{x^2+2015}).(y + \sqrt{y^2+2015})=2015 . chứng minh {x^2015}+y^2015} = 0\)
là sao