\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\) . CMR:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2018

Đơn giản thôi!!

Từ giả thiết, suy ra

\(\frac{x}{a+2b+c}=\frac{2y}{4a+2b-2c}=\frac{z}{4a-4b+c}=\frac{x+2y+z}{9a}\) (1)

\(\frac{2x}{2a+4b+2c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{2x+y-z}{9b}\) (2)

\(\frac{4x}{4a+8b+4x}=\frac{4y}{8a+4b-4c}=\frac{z}{4a-4b+c}=\frac{4x-4y+x}{9c}\) (3)

Từ (1) , (2) và (3) suy ra:

\(\frac{x+2y+z}{9a}=\frac{2x+y-z}{9b}=\frac{4x-4y+z}{9c}\)

\(\frac{9a}{x+2y+z}-\frac{9b}{2x+y-z}=\frac{9c}{4x-4y+z}\)

\(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}^{\left(đpcm\right)}\)

26 tháng 3 2018

Thằng này tự đăng tự làm cho đúng làm gì ???? ảo

27 tháng 12 2016

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)

=>\(B=\frac{\left(a^2x+b^2y+c^2z\right)^3}{x^3+y^3+z^3}=\frac{\left(a^2ak+b^2bk+c^2ck\right)^3}{\left(ak\right)^3+\left(bk\right)^3+\left(ck\right)^3}=\frac{\left(a^3k+b^3k+c^3k\right)^3}{a^3k^3+b^3k^3+c^3k^3}\)

\(=\frac{k^3\left(a^3+b^3+c^3\right)^3}{k^3\left(a^3+b^3+c^3\right)}=\left(a^3+b^3+c^3\right)^2\)

28 tháng 12 2016

cảm ơn trà my nhiều

bài nè ko phải gửi đi lấy điểm đâu các bn.

11 tháng 9 2016

* So sánh \(\frac{a}{b}and\frac{a+c}{b+d}\)

\(\frac{a}{b}=\frac{a.\left(b+d\right)}{b.\left(b+d\right)}\) và \(\frac{a+c}{b+d}=\frac{\left(a+c\right).b}{\left(b+d\right).b}\)

TỪ đây ta so sánh a.(b+d) và  ( a+ c).b 

a.( b+d) = ab+ ad

(a+c). b = ab+ bc 

Nếu \(\frac{a}{b}>\frac{c}{d}\)thì x> z

nếu \(\frac{a}{b}< \frac{c}{d}\)thì x < z

nếu \(\frac{a}{b}=\frac{c}{d}\)thì x = z 

So sánh y và z cũng tương tự!

18 tháng 11 2018

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)

\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)

\(\Rightarrow x=165;y=20;z=25\)