Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{xy}{x^2+y^2}=\frac{3}{8}\Leftrightarrow3x^2+3y^2-8xy=0\)
Nhận thấy điều kiện của phương trình là x,y cùng khác 0
Chia cả hai vê của phương trình trên cho \(y^2\ne0\)được :
\(3\left(\frac{x}{y}\right)^2-8\left(\frac{x}{y}\right)+3=0\). Đặt \(a=\frac{x}{y}\), phương trình trở thành : \(3a^2-8a+3=0\Leftrightarrow\orbr{\begin{cases}x=\frac{4+\sqrt{7}}{3}\\x=\frac{4-\sqrt{7}}{3}\end{cases}}\)
Từ đó rút ra được tỉ lệ của \(\frac{x}{y}\). Bạn thay vào tính A là được :)
2) \(\frac{x^9-1}{x^9+1}=7\Leftrightarrow\frac{x^9-1}{x^9+1}-1=6\Leftrightarrow\frac{-2}{x^9+1}=6\Leftrightarrow x^9=\frac{-2}{6}-1=-\frac{4}{3}\)
Ta có \(A=\frac{\left(x^9\right)^2-1}{\left(x^9\right)^2+1}\). Thay giá trị của x9 vừa tính ở trên vào là được :)
x^9=a=> \(\frac{a-1}{a+1}=7\Rightarrow a-->\frac{a^2-1}{a^2+1}=A\)
\(\frac{a-1}{a+1}=7\Rightarrow7a+7=a-1\Rightarrow6a=-8=>a=-\frac{8}{6}=\frac{-4}{3}\)
a^2=16/9=>
\(A=\frac{a^2-1}{a^2+1}=\frac{\frac{16}{9}-1}{\frac{16}{9}+1}=\frac{16-9}{16+9}=\frac{7}{25}\)
\(\frac{x^9-1}{x^9+1}=7\)=>x9-1=7x9+1
=>x9=\(\frac{-8}{6}\)
=>(x9)2=(\(\frac{-8}{6}\))2
=>x18=\(\frac{16}{9}\)=>..................................
\(a,\frac{1}{3x-2}-\frac{1}{3x+2}-\frac{3x-6}{4-9x^2}\)
\(=\frac{1}{3x-2}-\frac{1}{3x+2}+\frac{3\left(x-2\right)}{\left(3x+2\right)\left(3x-2\right)}\)
\(=\frac{3x+2-\left(3x-2\right)+3\left(x-2\right)}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\frac{3x+2-3x+2+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\frac{3x-2}{\left(3x-2\right)\left(3x+2\right)}=\frac{1}{3x+2}\)
\(b,\frac{18}{\left(x-3\right)\left(x^2-9\right)}-\frac{3}{x^2-6x+9}-\frac{x}{x^2-9}\)
\(=\frac{18}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}-\frac{3}{\left(x-3\right)\left(x-3\right)}-\frac{x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{18-3\left(x+3\right)-x\left(x-3\right)}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}\)
\(=\frac{18-3x-9-x^2+3x}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}\)
\(=\frac{-x^2+9}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}\)
\(=\frac{-\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}=-\frac{1}{x-3}\)
a) \(\frac{9x^2}{11y^2}:\frac{6x}{11y}=\frac{9x^2}{11y^2}\cdot\frac{11y}{6x}=\frac{3xy}{2}\)
b) \(\frac{x^2-49}{x-7}+x-2=\frac{\left(x-7\right)\left(x+7\right)}{x-7}+x-2=x+7+x-2=2x+5\)
c) \(\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}\)
= \(\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{1\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{18}{\left(3-x\right)\left(x+3\right)}\)
= \(\frac{3x-9}{\left(x-3\right)\left(x+3\right)}+\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{18}{\left(x-3\right)\left(x+3\right)}\)
= \(\frac{3x-9+x+3+18}{\left(x-3\right)\left(x+3\right)}\)
= \(\frac{4x+12}{\left(x-3\right)\left(x+3\right)}\)
= \(\frac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{4}{x-3}\)(đk: \(x-3\ne0\)=> \(x\ne3\))
c) \(\dfrac{7x-1}{2}=5+\dfrac{9-5x}{6}\)
\(\Leftrightarrow\dfrac{6\left(7x-1\right)}{12}=\dfrac{5\cdot12}{12}+\dfrac{2\left(9-5x\right)}{12}\)
\(\Rightarrow42x-6=60+18-10x\)
\(\Leftrightarrow52x-84=0\)
\(\Leftrightarrow x=\dfrac{21}{13}\)
Vậy....
d) tương tự
a) \(\dfrac{x-3}{x-2}+\dfrac{x-2}{x-4}=-1\)ĐKXĐ : \(x\ne2;4\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}+\dfrac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Leftrightarrow\dfrac{2x^2-11x+16}{x^2-6x+8}=-1\)
\(\Leftrightarrow2x^2-11x+16=-x^2+6x-8\)
\(\Leftrightarrow3x^2-17x+24=0\)
\(\Leftrightarrow3x^2-9x-8x+24=0\)
\(\Leftrightarrow3x\left(x-3\right)-8\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{8}{3}\end{matrix}\right.\)( thỏa mãn ĐKXĐ )
Vậy....
Ta có: (x9-1)/(x9+1)=7
=> x9-1=7x9+1
=> 6x9=-2
=> x9=-1/3
=> x=\(\sqrt[9]{\frac{-1}{3}}\)
thay \(\sqrt[9]{\frac{-1}{3}}\) vào \(\frac{x^{18}-1}{x^{18}+1}\)ta được:
\(\frac{\left(\sqrt[9]{\frac{-1}{3}}\right)^{18}-1}{\left(\sqrt[9]{\frac{-1}{3}}\right)^{18}+1}\)=\(\frac{\frac{1}{9}-1}{\frac{1}{9}+1}\)=\(\frac{-4}{5}\)
Vậy \(\frac{x^{18}-1}{x^{18}+1}\)= \(\frac{-4}{5}\)