Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $\frac{x}{3}=\frac{y}{4}=\frac{z}{5}$
$\Rightarrow$ \(\left\{\begin{matrix} 4x=3y\\ 5y=4z\\ 3z=5x\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 4x-3y=0\\ 5y-4z=0\\ 3z-5x=0\end{matrix}\right.\)
\(\Rightarrow \frac{4x-3y}{2016}=0; \frac{5y-4z}{2017}=0; \frac{3z-5x}{2018}=0\)
\(\Rightarrow \frac{4x-3y}{2016}=\frac{5y-4z}{2017}=\frac{3z-5x}{2018}\)
Ta có đpcm.
1.
Có: \(\frac{4x-5y}{7}=\frac{5z-3x}{9}=\frac{3y-4z}{11}\\ \Leftrightarrow\frac{7}{7}.\left(\frac{4x-5y}{7}\right)=\frac{9}{9}.\left(\frac{5z-3x}{9}\right)=\frac{11}{11}.\left(\frac{3y-4z}{11}\right)\\ \Leftrightarrow\frac{28x-35y}{49}=\frac{45z-27x}{81}=\frac{33y-44z}{121}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{28x-35y}{49}=\frac{45z-27x}{81}=\frac{33y-44z}{121}=\frac{28x-35y+45z-27x+33y-44z}{49+81+121}\)
tính ra nó đc x+ 2y +z ko đc tròn cho lắm..... mệt r tự nghĩ tiếp đi
Cách này không biết đúng không, theo bình thường thì gặp mấy bài này thì làm kiểu này
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:\(\frac{4z-5y}{3}=\frac{5x-3z}{4}=\frac{12z-15y}{9}=\frac{20x-12z}{16}=\frac{\left(12z-15y\right)+\left(20x-12z\right)}{9+16}=\frac{20x-15y}{25}\)
Mà theo đề bài thì \(\frac{4z-5y}{3}=\frac{5x-3z}{4}=\frac{3y-4x}{5}\)
Cho nên \(\frac{20x-15y}{25}=\frac{3y-4x}{5}\Leftrightarrow\frac{4x-3y}{5}=\frac{3y-4x}{5}\Leftrightarrow4x-3y=0\Leftrightarrow4x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{4}\)
Chắc là làm hệt như trên thì được \(\frac{y}{4}=\frac{z}{5}\)rồi suy ra điều phải chứng minh là xong
\(\frac{4z-5y}{3}=\frac{5x-3z}{4}=\frac{3y-4x}{5}\)
\(\Leftrightarrow\frac{12z-15y}{9}=\frac{20x-12z}{16}=\frac{15y-20x}{25}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{12z-15y}{9}=\frac{20x-12z}{16}=\frac{15y-20x}{25}=\frac{0}{50}=0\)
\(\Rightarrow\hept{\begin{cases}12z=15y\\20x=12z\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{z}{5}=\frac{y}{4}\\\frac{x}{3}=\frac{y}{4}\end{cases}}\Leftrightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\left(đpcm\right)\)
Mn vào tcn của con này, https://olm.vn/thanhvien/kimmai123az, PTD/KM ?, nó chuyên đi copy bài của ng khác và câu hỏi tương tự
Từ dãy tỉ số bằng nhau bài cho ta có
\(\frac{20x-15y}{25}=\frac{15y-12z}{9}=\frac{12z-20x}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{20x-15y}{25}=\frac{15y-12z}{9}=\frac{12z-20x}{16}=\frac{20x-15y+15y-12z+12z-20x}{25+9+16}=0\)
\(\Rightarrow4x-3y=5y-4z=3z-5x=0\)
....
Từ \(\frac{4x-3y}{5}\)=\(\frac{5y-4z}{3}\)=\(\frac{3z-5x}{4}\)⇒\(\frac{20x-15y}{25}\)=\(\frac{15y-12z}{9}\)=\(\frac{12z-20x}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{20x-5y}{25}\)=\(\frac{15y-12z}{9}\)\(\frac{12z-20x}{16}\)=\(\frac{20x-5y+15y-12z+12z-20x}{25+9+16}\)=\(\frac{0}{50}\)=0
+)4x-3y=0⇒4x=3y⇒\(\frac{x}{3}\)=\(\frac{y}{4}\)
+)5y-4z=0⇒5y=4z⇒\(\frac{y}{4}\)=\(\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)=\(\frac{x-y+z}{3-4+5}=\frac{2020}{4}=505\)
+)\(\frac{x}{3}=505\)⇒x=1515
+)\(\frac{y}{4}=505\)⇒y=2020
+)\(\frac{z}{5}=505\)⇒z=2525
Vậy....
a) Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Leftrightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Khi đó : \(\left(3k\right)^2+2.\left(4k\right)^2+4.\left(5k\right)^2=141\)
\(\Leftrightarrow141k^2=141\)
\(\Leftrightarrow k^2=1\)
\(\Leftrightarrow k=\pm1\)
TH1 \(\hept{\begin{cases}x=3\\y=4\\z=5\end{cases}}\)
TH2 \(\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)
Vậy.....
a)
Theo đề bài ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(x^2+2y^2+4z^2=141\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x^2}{3^2}=\frac{2y^2}{2.4^2}=\frac{4z^2}{4.5^2}=\frac{x^2+2y^2+4z^2}{9+32+100}=\frac{141}{141}=1\)
\(\frac{x}{3}=1\Rightarrow x=3.1=3\)
\(\frac{y}{4}=1\Rightarrow y=4.1=4\)
\(\frac{z}{5}=1\Rightarrow z=5.1=5\)
Vậy x = 3
y=4
z=5
Đặt x/3=y/4=z/5=k
bn giảng chi tiết đc ko :)