K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2018

Bạn có thể sử dụng BĐT thức Cô-si và xét trường hợp dấu bằng xảy ra nhé bạn !

5 tháng 4 2020

Câu hỏi của Trần Ngọc Tú - Toán lớp 8 - Học toán với OnlineMath

24 tháng 11 2018

Ta có

\(x+y+z+\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{y+x}=x+y+z\)

=> \(x+\frac{x^2}{y+z}+y+\frac{y^2}{z+x}+z+\frac{z^2}{y+x}=x+y+z\)

=> \(\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{y+x}=x+y+z\)

=> \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}=1\)

13 tháng 3 2020

\(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0\\ =\frac{x}{y-z}=-\left(\frac{y}{z-x}+\frac{z}{x-y}\right)\\ =\frac{x}{\left(y-x\right)^2}=-\left(\frac{y}{z-x}+\frac{z}{x-y}\right).\frac{1}{y-x}=\frac{-xy+y^2-z^2+xz}{\left(z-x\right)\left(x-y\right)\left(y-z\right)}\left(1\right)\)

Tự làm với 2 phân thức còn lại, ta có:

\(\frac{y}{\left(z-x\right)^2}=\frac{-x^2+z^2+xy-yz}{\left(z-x\right)\left(x-y\right)\left(y-z\right)}\left(2\right)\)

\(\frac{z}{\left(x-y\right)^2}=\frac{x^2-y^2-xz+yz}{\left(z-x\right)\left(x-y\right)\left(y-z\right)}\left(3\right)\)

Cộng 3 vế lại với nhau ta có: \(Q=\frac{x}{\left(y-x\right)^2}+\frac{y}{\left(z-x\right)^2}+\frac{z}{\left(x-y\right)^2}=0\)

12 tháng 2 2017

Câu 1, Quy đồng mẫu của 2 về lấy MTC là (x-y)(y-z)(z-x).

Câu 2, Chỉ có thể xảy ra khi a+b+c=x+y+z=x/a+y/b+z/c=0

3 tháng 12 2018

\(\left(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\right)^2=1\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{2}{xy}+\frac{2}{yz}-\frac{2}{xz}=1\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1+\frac{2}{xy}-\frac{2}{yz}+\frac{2}{xz}\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1+\frac{2z-2x+2y}{xyz}\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1+\frac{2z-2\left(y+z\right)+2y}{xyz}\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1+0=1\)

2 tháng 1 2017

Hay quớ ak! Mơn m nhìu nha ný! <3 <3 <3 (not thả thính =))))

3 tháng 1 2017

chỉ thả tai thui

13 tháng 11 2019

Cậu vào phần thống kê câu trả lời của mk ấy, ngay câu đầu tiên 

tham khảo nha: Câu hỏi của Nguyễn Thị Phương Thảo - Toán lớp 8 - Học toán với OnlineMath

13 tháng 11 2019

Ta có: x + y + z = 0 

=> x = -y - z

=> x2 = (-y - z)2

=> x2 = y2 + 2yz + z2

=> x2 - y2 - z2 = 2yz

CMTT: y2 = x2 + 2xz + z2 => y2 - z2 - x2 = 2xz

          z2 = x2 + 2xy + y2 => z2 - x2 - y2 = 2xy

Khi đó, ta có:M = \(\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}\)

M = \(\frac{x^3+y^3+z^3}{2xyz}\)

M = \(\frac{\left(x+y\right)\left(x^2-xy+y^2\right)+z^3}{2xyz}\)

M = \(\frac{\left(x+y\right)\left(x^2+2xy+y^2\right)-3xy\left(x+y\right)+z^3}{2xyz}\)

M = \(\frac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{2xyz}\)

M = \(\frac{\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right).z+x^2\right]-3xy\left(x+y\right)}{2xyz}\)(do x + y + z = 0)

M = \(\frac{-3xy.z}{2xyz}=-\frac{3}{2}\) (do x + y = -z)

13 tháng 11 2019

Sửa lại kq M = 3/2 (thay dòng cuối) (-3xy.z --> -3xy(-z)) n/b