Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=k\)
=> x = 2k + 1
y = 4k - 3
z = 6k + 5
Thay vào biểu thức 5z - 3x - 4y = 50 , ta có :
5z - 3x - 4y = 50
=> 5.(6k + 5) - 3.(2k + 1) - 4.(4k - 3) = 50
=> 30k + 25 - (6k + 3) - (16k - 12) = 50
=> 30k + 25 - 6k - 3 - 16k + 12 = 50
=> (30k - 6k - 16k) + (25 - 3 + 12) = 50
=> 8k + 34 = 50
=> 8k = 16
=> k = 2
=> \(\hept{\begin{cases}x=2k+1=2.2+1=5\\y=4k+3=4.2+3=11\\z=6k+5=6.2+5=17\end{cases}}\)
b)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
=> x = 2k
y = 3k
z = 4k
Thay vào biểu thức M , ta có :
\(M=\frac{y+z-x}{x-y+z}=\frac{3k+4k-2k}{2k-3k+4k}=\frac{5k}{3k}=\frac{5}{3}\)

a)2(x+y)=2(z+x)
=>\(x+y=z+x\)
=>y=z
=>\(\frac{y-z}{5}=\frac{0}{5}=0\)
5(y+z)=2(z+x)
5y+5z=2z+2x
mà y=z(cmt)
nên 5y+5y-2y=2x
8y=2x
x=4y
=>\(\frac{x-y}{4}=\frac{4y-y}{4}=\frac{3y}{4}\)
=>ko thỏa mãn đề bài
a ) Cho 2( x + y ) = 5( y + z ) = 3( z + x ) thì x−y4=y−z5
Theo đề bài ra ta có: \(2\left(x+y\right)=5\left(y+z\right)\Rightarrow\frac{x+y}{5}=\frac{y+z}{2}\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}\)
\(5\left(y+z\right)=3\left(z+x\right)\Rightarrow\frac{z+x}{5}=\frac{y+z}{3}\Rightarrow\frac{z+x}{10}=\frac{y+z}{6}\)
\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}=\frac{x+y-y-z-z-x}{15-6-10}=\frac{0}{-1}=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+y=0\\y+z=0\\z+x=0\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=0\\y=0\\z=0\end{array}\right.\)
\(\Rightarrow5x-5y=4y-4z\)(Do x,y,z=0)
\(\Rightarrow5\left(x-y\right)=4\left(y-z\right)\)
\(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\)

\(\frac{x}{5}=\frac{y}{7}\Rightarrow\frac{x}{15}=\frac{x}{21};\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{21}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{21}=\frac{z}{28}=\frac{x+y+z}{15+21+28}=\frac{192}{64}=3\)
\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=21.3=63\\z=28.3=84\end{cases}}\)
Vậy: x=45; y=63;z=84
Theo bài ra ta có :
\(\frac{x}{5}\)=\(\frac{y}{7}\)\(\Rightarrow\frac{x}{15}\)=\(\frac{y}{21}\)
\(\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{21}=\frac{z}{28}\)
\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{21}=\frac{z}{28}\)và x+y+z=192
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{15}=\frac{y}{21}=\frac{z}{28}=\frac{x+y+z}{15+21+28}=\frac{192}{64}=3\)
\(\Rightarrow\hept{\begin{cases}x=3.15=45\\y=3.21=63\\z=3.28=74\end{cases}}\)
Nhớ k mk nha

1 Ta có x -24 = y
Suy ra x - y = 24
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/7 = y/3 = x-y/7-3 =24/4=6
suy ra x= 42
y = 18

\(\frac{x}{4}=\frac{y}{8}=\frac{x}{4}=\frac{2y}{16}=\frac{x+2y}{4+16}=\frac{x+2y}{20}\Rightarrow x+2y=\frac{20y}{8}\)
\(\frac{y}{8}=\frac{z}{5}=\frac{y+z}{8+5}=\frac{y+z}{13}\Rightarrow y+z=\frac{13y}{8}\)
\(\Rightarrow M=\frac{x+2y}{y+z}=\frac{20y}{8}.\frac{8}{13y}=\frac{20}{13}\)
N và P tính tương tự

#)Giải :
a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)
Vậy x = 45; y = 60; z = 84
b) Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)
\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)
Thay (1) vào (+) ta được :
\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)
\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)
Thay (2) và (+2) ta được :
\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)
\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)
Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)
Mà \(xyz=810\Rightarrow30k^3=810\)
\(\Rightarrow k^3=27\)
\(\Rightarrow k=3\)
Thay vào tìm x,,z.