Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B)ĐỀ BÀI \(\Leftrightarrow\left(\frac{X}{2}\right)^3=\frac{X}{2}.\frac{Y}{3}.\frac{Z}{5}=\frac{810}{30}=27\\ \)
\(\Leftrightarrow\frac{X}{2}=3\Rightarrow X=6\)
TỪ ĐÓ SUY RA Y=9;Z=15
a) \(\frac{x}{y}=\frac{15}{7}\Leftrightarrow\)\(\frac{x}{15}=\frac{y}{17}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{17}=\frac{x-2y}{15-2\cdot17}=\frac{16}{-19}\)
=> \(\begin{cases}x=-\frac{240}{19}\\y=-\frac{272}{19}\end{cases}\)
b) \(\frac{x}{y}=\frac{8}{11};\frac{z}{y}=\frac{3}{11}\)
\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{11};\frac{z}{3}=\frac{y}{11}\)
\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)
\(\Rightarrow\begin{cases}x=40\\y=55\end{cases}\)
c) \(\frac{x}{4}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{6}\)
=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)
Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}=k\Rightarrow x=8k;y=6k;z=11k\)
Có \(xyz=-528\)
\(\Leftrightarrow8k\cdot6k\cdot11k=-528\)
\(\Leftrightarrow528\cdot k^3=-528\)
\(\Leftrightarrow k^3=-1\Leftrightarrow k=-1\)
Với k=-1 thì : x=-8;y=-6;x=-11
a) Từ \(\frac{x}{y}=\frac{15}{7}\Rightarrow\frac{x}{15}=\frac{y}{7}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{x}{15}=\frac{y}{7}=\frac{x-2y}{15-14}=16\)
=> \(\begin{cases}x=240\\y=112\end{cases}\)
b) Từ \(\frac{x}{y}=\frac{8}{11}\Rightarrow\frac{x}{8}=\frac{y}{11}\)
\(\frac{z}{y}=\frac{3}{11}\Rightarrow\frac{z}{3}=\frac{y}{11}\)
=> \(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)
=> \(\begin{cases}x=40\\y=55\\z=15\end{cases}\)
c)Từ \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{6}\)
=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)
Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\) = k
=> \(\begin{cases}x=8k\\y=6k\\z=11k\end{cases}\)
=> x.y.z = -528 => 8k.6k.11k = -528 => 528k3 = -528
=> k3 = -1 => k = -1
=> \(\begin{cases}x=-8\\y=-6\\z=-11\end{cases}\)
a) Áp dụng tính chất ..., ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{2+6-4}=\frac{8}{4}=2\)
\(\Rightarrow x=4;y=6;z=8\)
b)2x = 4y \(\Rightarrow\frac{x}{4}=\frac{y}{2}\)\(\Rightarrow\frac{x}{20}=\frac{y}{10}\)( 1 )
4y =5z \(\Rightarrow\frac{y}{5}=\frac{z}{4}\)\(\Rightarrow\frac{y}{10}=\frac{z}{8}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{8}\)
Áp dụng tính chất ..., ta có :
\(\frac{x}{20}=\frac{y}{10}=\frac{z}{8}=\frac{x-y+2z}{20-10+16}=\frac{40}{26}=\frac{20}{13}\)
\(\Rightarrow x=\frac{400}{13};y=\frac{200}{13};z=\frac{160}{13}\)
còn lại tương tự
b. Áp dụng t/c dãy tỉ số = nhau:
\(\frac{x}{2}=\frac{y}{5}=\frac{x-y}{2-5}=-\frac{7}{3}\)
\(\Rightarrow\frac{x}{2}=-\frac{7}{3}\Leftrightarrow x=-\frac{7}{3}.2=-\frac{14}{3}\)
\(\Rightarrow\frac{y}{5}=-\frac{7}{3}\Leftrightarrow y=-\frac{7}{3}.5=-\frac{35}{3}\)
Vậy \(\hept{\begin{cases}x=-\frac{14}{3}\\y=-\frac{35}{3}\end{cases}}\)
c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)
Ta có: \(xyz=192\Leftrightarrow2k.3k.4k=192\)
\(\Leftrightarrow24k^3=192\)
\(\Leftrightarrow k^3=8\)
\(\Leftrightarrow k=2\)
\(\Rightarrow x=2.2=4\)
\(y=2.3=6\)
\(z=2.4=8\)
e, Ta có: \(x=\frac{y}{2}=\frac{z}{3}=\frac{2x}{2}=\frac{3z}{9}\)
Áp dụng t/c dãy tỉ số = nhau:
\(\frac{2x}{2}=\frac{y}{2}=\frac{3z}{9}=\frac{2x-y+3z}{2-2+9}=\frac{10}{9}\)
\(\Rightarrow x=\frac{10}{9}\)
\(y=\frac{10}{9}.2=\frac{20}{9}\)
\(z=\frac{10}{9}.3=\frac{10}{3}\)
b,\(\frac{x}{2}=\frac{y}{5}=\frac{x-y}{2-5}=\frac{7}{-3}.\)
=>x= \(\frac{7}{-3}.2=-4\frac{2}{3}\)
y, \(\frac{7}{-3}.5=-11\frac{2}{3}\)
b) từ đề bài suy ra được x=2y/3. Z=5y/3 thay vào x.y.z=810 ta được. 10/9 nhân y^3 =810 => y^3=729=>y=9=>x=6. Z=15.
a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
Suy ra : x = 2.6 = 12
y = 2.4 = 8
z = 2.5 = 10
b,c,d tương tự
e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
Tới đây bạn làm tương tự a,b,c,d
f tương tự.
g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Bạn áp dụng dãy tỉ số bằng nhau là ra.
h/ Áp dụng dãy tỉ số bằng nhau :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)
Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.
Ta có : \(\frac{x+2}{2}=\frac{y+3}{3}=\frac{z+4}{4}=>\frac{2x+4}{4}=\frac{y+3}{3}=\frac{z+4}{4}\)\(=\frac{2x+4+y+3+z+4}{4+3+4}=\frac{2x+y+z+11}{11}=\frac{11+11}{11}=2\)
+)\(\frac{x+2}{2}=2=>x+2=4=>x=2\)
+)\(\frac{y+3}{3}=2=>y+3=6=>y=3\)
+)\(\frac{z+4}{4}=2=>z+4=8=>z=4\)
Vậy x = 2 ; y = 3 ; z = 4
\(\frac{x+2}{2}=\frac{y+3}{3}=\frac{z+4}{4}\Rightarrow\frac{x+2}{2}=\frac{x+2}{2}=\frac{y+3}{3}=\frac{z+4}{4}=\frac{x+2+x+2+y+3+z+4}{2+2+3+4}\)
\(=\frac{2x+y+x+2+2+3+4}{2+2+3+4}=\frac{11+11}{11}=\frac{22}{11}=2\)
\(\Rightarrow\frac{x+2}{2}=2\Rightarrow x=2\)
\(\Rightarrow\frac{y+3}{3}=2\Rightarrow y=3\)
\(\Rightarrow\frac{z+4}{4}=2\Rightarrow z=4\)