K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 5 2019

Do x thuộc cung phần tư thứ \(IV\) \(\Rightarrow\left\{{}\begin{matrix}sinx< 0\\cosx>0\end{matrix}\right.\) \(\Rightarrow sinx-cosx< 0\)

\(sinx+cosx=m\Rightarrow\left(sinx+cosx\right)^2=m^2\)

\(\Rightarrow1+2sinx.cosx=m^2\Rightarrow2sinx.cosx=m^2-1\)

Đặt \(P=sinx-cosx< 0\Rightarrow P^2=\left(sinx-cosx\right)^2=1-2sinx.cosx\)

\(\Rightarrow P^2=1-\left(m^2-1\right)=2-m^2\Rightarrow P=-\sqrt{2-m^2}\) (do \(P< 0\))

NV
1 tháng 5 2020

\(M=sin^2x+cos^2x+2sinx.cosx+cos^2x-sin^2x\)

\(=\left(sinx+cosx\right)^2+\left(cosx-sinx\right)\left(cosx+sinx\right)\)

\(=\left(sinx+cosx\right)\left(sinx+cosx+cosx-sinx\right)\)

\(=2cosx\left(sinx+cosx\right)\)

\(=2\sqrt{2}cosx.cos\left(x-\frac{\pi}{4}\right)\)

1 tháng 5 2020

Cảm ơn bạn nhá!!!

NV
30 tháng 4 2019

\(P=\frac{sin^2x+cos^2x+2sinx.cosx-1}{\sqrt{2}\left(cosx.cos\frac{\pi}{4}-sinx.sin\frac{\pi}{4}\right).cotx}-\frac{1}{cosx-sinx}\)

\(=\frac{2sinx.cosx}{\left(cosx-sinx\right).\frac{cosx}{sinx}}-\frac{1}{cosx-sinx}=\frac{2sin^2x}{cosx-sinx}-\frac{1}{cosx-sinx}\)

\(=\frac{2sin^2x-1}{cosx-sinx}=\frac{2sin^2x-\left(sin^2x+cos^2x\right)}{cosx-sinx}=\frac{sin^2x-cos^2x}{cosx-sinx}\)

\(=\frac{\left(sinx-cosx\right)\left(sinx+cosx\right)}{cosx-sinx}=-\left(sinx+cosx\right)\)

NV
29 tháng 5 2020

\(-\frac{\pi}{2}< x< 0\Rightarrow sinx< 0\)

\(\Rightarrow sinx=-\sqrt{1-cos^2x}=-\frac{1}{\sqrt{5}}\)

NV
7 tháng 11 2019

a/ \(cosx>0\Rightarrow cosx=\sqrt{1-sin^2x}=\frac{4}{5}\)

\(\Rightarrow tanx=-\frac{3}{4}\Rightarrow A=\frac{129}{20}\)

b/ \(B=\frac{5sinx+3cosx}{3cosx-2sinx}=\frac{\frac{5sinx}{sinx}+\frac{3cosx}{sinx}}{\frac{3cosx}{sinx}-\frac{2sinx}{sinx}}=\frac{5+3cotx}{3cotx-2}=\frac{5+9}{9-2}\)

c/ \(C=\frac{sinx.cosx\left(cotx-2tanx\right)}{sinx.cosx\left(5cotx+tanx\right)}=\frac{cos^2x-2sin^2x}{5cos^2x+sin^2x}=\frac{cos^2x-2\left(1-cos^2x\right)}{5cos^2x+1-cos^2x}=\frac{3cos^2x-2}{4cos^2x+1}=...\)

d/ Không dịch được đề, ko biết mẫu số bên trái nó đến đâu cả

26 tháng 7 2019

\(\frac{\sqrt{2}cosx-2cos\left(\frac{\pi}{4}+x\right)}{2sin\left(\frac{\pi}{4}+x\right)-\sqrt{2}sinx}\\ =\frac{cosx-\sqrt{2}cos\left(\frac{\pi}{4}+x\right)}{\sqrt{2}sin\left(\frac{\pi}{4}+x\right)-sinx}\\ =\frac{cosx-\sqrt{2}\left(\frac{\sqrt{2}}{2}cosx-\frac{\sqrt{2}}{2}sinx\right)}{\sqrt{2}\left(\frac{\sqrt{2}}{2}cosx+\frac{\sqrt{2}}{2}sinx\right)-sinx}\\ =\frac{cosx-cosx+sinx}{cosx+sinx-sinx}\\ =\frac{sinx}{cosx}=tanx\)

NV
12 tháng 6 2020

\(sinx-cos\left(\pi-x\right)=-\frac{1}{2}\)

\(\Leftrightarrow sinx+cosx=-\frac{1}{2}\)

\(\Rightarrow\left(sinx+cosx\right)^2=\frac{1}{4}\)

\(\Rightarrow sin^2x+cos^2x+2sinx.cosx=\frac{1}{4}\)

\(\Rightarrow1+2sinx.cosx=\frac{1}{4}\Rightarrow sinx.cosx=-\frac{3}{8}\)

\(T=\frac{1}{sinx}+\frac{1}{cosx}=\frac{sinx+cosx}{sinx.cosx}=\frac{-\frac{1}{4}}{-\frac{3}{8}}=\frac{2}{3}\)

2 tháng 1 2017

bài này mình tính ko ra

2 tháng 1 2017

m` tính cái mồ có mà trên mạng ko có để cop

NV
7 tháng 5 2019

\(\frac{sin^2x+cos^2x+2sinx.cosx}{sinx+cosx}-\left(1-tan^2\frac{x}{2}\right).cos^2\frac{x}{2}\)

\(=\frac{\left(sinx+cosx\right)^2}{sinx+cosx}-\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)\)

\(=sinx+cosx-cosx=sinx\)

\(sin^4x+cos^4\left(x+\frac{\pi}{4}\right)=\left(\frac{1}{2}-\frac{1}{2}cos2x\right)^2+\left(\frac{1}{2}+\frac{1}{2}cos\left(2x+\frac{\pi}{2}\right)\right)^2\)

\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\left(\frac{1}{2}-\frac{1}{2}sin2x\right)^2\)

\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\frac{1}{4}-\frac{1}{2}sin2x+\frac{1}{4}sin^22x\)

\(=\frac{1}{4}-\frac{1}{2}\left(cos2x+sin2x\right)+\frac{1}{4}\left(cos^22x+sin^22x\right)\)

\(=\frac{3}{4}-\frac{\sqrt{2}}{2}sin\left(2x+\frac{\pi}{4}\right)\)

7 tháng 5 2019

Cho em ngay dòng đầu tiên của câu b ấy ạ, tại sao tách ra thế dược ạ ?