\(\frac{n^2-1}{3}\)là tích 2 số tự nhiên liên tiếp . Chứng minh rằng : 2n-1 là số chí...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2019

Đặt :

\(\frac{n^2-1}{3}=x\left(x-1\right)\)

\(\Leftrightarrow n^2-1=3x\left(x-1\right)\)

\(\Leftrightarrow4n^2-4+3=3\left(4x^2-4x+1\right)\)

\(\Leftrightarrow4x^2-1=3\left(2x-1\right)^2\)

\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2x-1\right)^2\)

26 tháng 4 2019

tui không biết làm , vậy nên t.i.c.k cho tui nha :))) 

26 tháng 4 2019

1 thui

19 tháng 10 2016

Ta có :

\(A=n^5-5n^3+4n=n\left(n+1\right)=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)

chia hết cho \(2,3,4,5.\)

b ) Cần chứng minh 

\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1,n\in N\)*

là một số chính phương .

Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

Đặt :   \(n^2+3n=y\) thì 

            \(A=y\left(y+2\right)+1=y^2+2y+1\left(y+1\right)^2\)

         \(\Rightarrow A=\left(n^2+3n+1\right)^2,n\in N\)*

27 tháng 3 2020

1. Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath

19 tháng 9 2020

Ta có: \(a^2+b^2+1=2\left(ab+a+b\right)\)

\(\Leftrightarrow a^2+b^2+1-2ab+2a-2b=4a\)

\(\Leftrightarrow\left(a-b+1\right)^2=4a\)(*)

Do a,b nguyên nên \(\left(a-b+1\right)^2\)là số chính phương. Suy ra a là số chính phương a=x2 (x nguyên)

Khi đó (*) trở thành : \(\left(x^2-b+1\right)^2=4x^2\Rightarrow x^2-b+1=\pm2x\Leftrightarrow b=\left(x\mp1\right)^2\)

Vậy a và b là hai số chính phương liên tiếp.

3 tháng 1 2016

p nguyên tố p>3

=>p có dạng 6m+1 và 6m-1

Thay vào p^2+2012 chứng minh nó là hợp số nữa là xong bạn à.

Nếu thấy bài làm của mình đúng thì tick nha bạn.Cảm ơn bạn nhiều.

3 tháng 1 2016

bn viết cả bài làm cho mình đc ko