Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Nếu \(k\)= 0 thì hiển nhiên ta có : \(\frac{ak^2+bk+c}{xk^2+yk+z}=\frac{c}{z}\). Giá trị tỉ số ko phụ thuộc vào \(k\)
- Nếu \(k\ne0\), áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{ak^2}{xk^2}=\frac{bk}{yk}=\frac{ak^2+bk+c}{xk^2+yk+z}\)
Ta thấy tỉ số luôn bằng giá trị bang đầu là: \(\frac{a}{x};\frac{b}{y};\frac{c}{z}\) . Hay ko phụ thuộc vào giá trị \(k\)
Hok tốt
Ta có : \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{ak^2}{xk^2}=\frac{bk}{yk}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{ak^2}{xk^2}=\frac{bk}{yk}=\frac{ak^2+bk+c}{xk^2+yk+z}\)
hay \(\frac{a}{b}=\frac{ak^2+bk+c}{xk^2+yk+z}\)
Vậy tỉ số \(\frac{ak^2+bk+c}{xk^2+yk+z}\) ko phụ thuộc vào giá trị của k
Câu hỏi của Oo_ Love is a beautiful pain _oO - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo link trên nhé!
Đặt \(\dfrac{a}{x}\)=\(\dfrac{b}{y}\)=\(\dfrac{c}{z}\)=m
\(\Rightarrow\)a=xm ; b=ym ; c=zm
Thay a=xm ; b=ym ; c=zm vào \(\dfrac{ak^2+bk+c}{xk^2+yk+z}\)ta có:
\(\dfrac{ak^2+bk+c}{xk^2+yk+z}\)=\(\dfrac{xmk^2+ymk+zm}{xk^2+yk+z}\)=\(\dfrac{m\left(xk^2+yk+z\right)}{xk^2+yk+z}\)=m
\(\Rightarrow\)đpcm
\(\text{Đặt }\frac{m}{a}=\frac{n}{b}=\frac{k}{c}=l,\text{ ta có: }\)
\(m=al,n=bl,k=cl\)
\(A=\frac{alx+bly+clz}{ax+by+cz}=\frac{l\left(ax+by+cz\right)}{ax+by+cz}=l\)
Vậy..
\(2,2.\left(x+y\right)=5.\left(y+z\right)=3.\left(x+z\right)\Leftrightarrow\frac{x+y}{5}=\frac{y+z}{2},\frac{y+z}{3}=\frac{x+z}{5}\)
\(\Leftrightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}=\frac{y+z-x-z}{6-10}=\frac{y-x}{-4}=\frac{x-y}{4}=\frac{x+y-x-z}{15-10}=\frac{y-z}{5}\)
\(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\left(đpcm\right)\)
a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có \(\frac{ax+by}{za+bt}=\frac{bkx+by}{bkz+bt}=\frac{b\left(kx+y\right)}{b\left(kz+t\right)}=\frac{kx+y}{kz+t}\)(1)
\(\frac{cx+yd}{cz+dt}=\frac{dkx+yd}{dkz+dt}=\frac{d\left(kx+y\right)}{d\left(kz+t\right)}=\frac{kx+y}{kz+t}\)(2)
Từ (1) và (2) => đpcm.
b) Đặt \(\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}=k\Rightarrow a=a_1k;b=b_1k;c=c_1k\)thay vào p;
=> \(p=\frac{a_1kx^2+b_1kx+c_1k}{a_1x^2+b_1x+c_1}=\frac{k\left(a_1x^2+b_1x+c\right)}{a_1x^2+b_1x+c_1}=k\)
Vậy p không phụ thuộc x.
1
- fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffff
Ez lắm =)
Bài 1:
Với mọi gt \(x,y\in Q\) ta luôn có:
\(x\le\left|x\right|\) và \(-x\le\left|x\right|\)
\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)
Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Dấu "=" xảy ra khi: \(xy\ge0\)
Bài này có trong câu hỏi tương tự và đã được olm.vn bình chọn nhé
Mình chỉ làm lại cho bạn dễ coi thôi
Đặt \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=k\)
Khi đó \(a=kx;b=yk;c=zk\)
Suy ra \(\frac{ak^2+bk+c}{xk^2+yk+z}=\frac{xk.k^2+yk.k+zk}{x.k^2+yk+z}=\frac{xk^3+yk^2+zk}{xk^2+yk+z}=\frac{k.\left(xk^2+yk+z\right)}{xk^2+yk+z}=k\)
Do đó giá trị biểu thức không phụ thuộc vào k
Vậy..
bạn viết sai đề rùi