\(\frac{a}{e}=\frac{b}{d}=\frac{c}{f}=4\) và \(e-3d+2f\ne0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2018

Ai giải giúp mình với ạ ?

11 tháng 2 2018

Ta có :

\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)\(\left(1\right)\)

Ta lại có :

\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\)\(\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}\)\(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\) suy ra \(\frac{2a+3b}{2c+3d}=\frac{a-b}{c-d}\)

Vậy ...

21 tháng 1 2018

Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a+b+c+d khác 0)

=>a=b=c=d

=>M=\(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{1}{2}\cdot4=2\)

23 tháng 1 2018

Ta có:a/b=b/c=c/d=d/a

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:a/b=b/c=c/d=(a+b+c+d)/(b+c+d+a)=1

=>a=b=c=d(vì a/b=b/c=c/d=d/a=1)

Thay vào M sau đó tìm được M=2

21 tháng 6 2018

a) nhân 2 hai vế: \(\frac{2a}{b}=\frac{2c}{d}\) 

cộng 1 cả hai vế: \(\frac{2a}{b}+1=\frac{2c}{d}+1\)

\(\frac{2a+b}{b}=\frac{2c+d}{d}\)

b) Tính chất tỉ lệ thức:  \(\frac{a}{b}=\frac{c}{d}hay\frac{a}{c}=\frac{b}{d}\)

Nhân 2 và 3 lần lượt cho cả hai vế: \(\frac{2a}{2c}=\frac{3b}{3d}\)

Dãy tỉ số bằng nhau: \(\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a-3b}{2c-3d}=\frac{2a+3b}{2c+3d}\)

áp dụng tính chất tỉ lệ thức: \(\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)

Nhớ k cho mình nhe :)

21 tháng 6 2018

a, Ta có : 2a + b / b = 2a/b + b/b .

                                = 2 . a/b + 1 .

                                = 2 . c/d + 1 . ( vì a/b = c/d ) .

                                = 2c/d + d/d .

                                = 2cd + d / d.d 

                                = d . ( 2c + d ) / d .d 

                                =   2c + d / d

Vậy bài toán được chứng minh .

 Em chỉ làm được đến đó thôi . 

11 tháng 8 2018

a) Áp dụng TC của dãy tỉ số bằng nhau ta có :

\(\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{a-2c+3e}{b-2d+3f}\left(đpcm\right)\)

11 tháng 8 2018

 a, Ta có

\(\frac{c}{d}=\frac{2c}{2d};\frac{e}{f}=\frac{3e}{3f}\)

\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}=\frac{3e}{3f}=\frac{a-2c+3e}{b-2d+3f}\)( t/c dãy tỉ số bằng nhau )

b, \(\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{a+c+e}{b+d+f}\)( t/c dãy tỉ số bằng nhau )

\(\Rightarrow\frac{a}{b}=\frac{a+c+e}{b+d+f}\)

\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{a+c+e}{b+d+f}\right)^3\)