Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(đat:\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(a,\frac{a^2-b^2}{ab}=\frac{b^2k^2-b^2}{bkb}=\frac{b^2\left(k^2-1\right)}{b^2k}=\frac{k^2-1}{k};\frac{c^2-d^2}{cd}=\frac{d^2\left(k^2-1\right)}{d^2k}=\frac{k^2-1}{k}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\) \(b,\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left[b\left(k+1\right)\right]^2}{b^2k^2+b^2}=\frac{b^2\left(k+1\right)^2}{b^2\left(k^2+1\right)}=\frac{\left(k+1\right)^2}{\left(k^2+1\right)};\frac{\left(c+d\right)^2}{c^2+d^2}=\frac{\left[d\left(k+1\right)\right]^2}{d^2k^2+d^2}=\frac{d^2\left(k+1\right)^2}{d^2\left(k^2+1\right)}=\frac{\left(k+1\right)^2}{k^2+1}\Rightarrow\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\) \(c,\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1};\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Ta có: \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a^2}{2c^2}=\frac{3ab}{3cd}=\frac{4b^2}{4d^2}=\frac{2a^2-3ab+4b^2}{2c^2-3cd+4d^2}=\frac{5b^2}{5d^2}=\frac{6ab}{6cd}=\frac{5b^2+6ab}{5d^2+6cd}\)
Suy ra : \(\frac{2a^2-3ab+4b^2}{2c^2-3cd+4d^2}=\frac{5b^2+6ab}{5d^2+6cd}\)
\(\Rightarrow\frac{2a^2-3ab+4b^2}{5b^2+6ab}=\frac{2c^2-3cd+4d^2}{5d^2+6cd}\) \(\left(dpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề phải là cmr : a^2+c^2/b^2+c^2 = a/b chứ bạn
Đặt : a/c = c/b = k
=> a=ck ; c=bk
=> a^2=c^2k^2 ; c^2=b^2k^2
=> a^2+c^2/b^2+c^2 = c^2k^2+c^2/b^2+b^2k^2 = c^2.(k^2+1)/b^2.(1+k^2) = c^2/b^2 = (c/b)^2 = k^2
Mà : a=ck ; c=bk => a=b.k.k = b.k^2 => k^2 = a/b
=> a^2+c^2/b^2+c^2 = a/b
=> ĐPCM
Tk mk nha
Mk sửa đề luôn nhá
Ta có :
\(\frac{a}{c}=\frac{c}{b}\Rightarrow ab=c^2\)
Do đó :
\(\frac{a^2+c^2}{b^2+c^2}\)
\(\Leftrightarrow\)\(\frac{a^2+ab}{b^2+ab}\)
\(\Leftrightarrow\)\(\frac{a\left(a+b\right)}{b\left(a+b\right)}\)
\(\Leftrightarrow\)\(\frac{a}{b}\)
Vậy \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x.y=12\Rightarrow y=\frac{12}{x}\) thay vào pt ta có :
\(\frac{x}{3}=\frac{12}{\frac{x}{4}}\)
\(\Leftrightarrow\frac{x}{3}=\frac{3}{x}\) \(\Leftrightarrow x^2=9\) \(\Rightarrow Th1:x=3\Rightarrow y=4\)
\(Th2:x=-3\Rightarrow y=-4\)
đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow x=3k,y=4k\)
ta có:
\(x.y=3k.4k=12.k^2=12\Rightarrow k^2=1\Rightarrow\orbr{\begin{cases}k=1\\k=-1\end{cases}}\)
\(k=1\Rightarrow x=3.1=3,y=4.1=4\)
\(k=\left(-1\right)\Rightarrow x=3.\left(-1\right)=-3,y=4.\left(-1\right)=-4\)
vậy x=3,y=4 hay x=-3, y=-4
2.\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)
\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\left(2\right)\)
từ (1) và (2) => \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b2-c2=(a2+b2)-(a2-c2)/c
a2+b2/a2+c2-1=b/c-1
a2+b2-(a2+c2)/a2+c2=b-c/c
=b2-c2/a2+c2=b-c/c(ĐPCM)
Làm đầu tiên nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Ta có \(\frac{a}{b}=\frac{b}{c}=>\frac{a^2}{b^2}=\frac{b^2}{c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)
Mà \(\frac{a^2}{b^2}=\frac{ab}{bc}=\frac{a}{c}\)nên\(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)(dpcm)
b) Ta có : \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)(cm ở câu a)
\(=>\frac{b^2+c^2}{a^2+b^2}=\frac{c}{a}=>\frac{b^2+c^2}{a^2+b^2}-1=\frac{c}{a}-1=>\frac{c^2-a^2}{a^2+b^2}=\frac{c-a}{a}\)(dpcm)
Đề có sai không bạn?
đề ko sai đau nha![haha haha](https://hoc24.vn/media/cke24/plugins/smiley/images/haha.png)