Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/h=1/2(1/a+1/b)=1/2a+1/2b=(a+b)/2ab
=>(a+b/)2ab-1/h=0
quy dong len ta co
(a+b)h/2abh-2ab/2abh=0=> (ah+bh-2ab)/2abh=0 =>ah+bh-2ab=0
=>ah+bh-ab-ab=0
=>a(h-b)-b(a-h)=0
=>a(h-b)=b(a-h)
=>a/b=(a-h)(h-b)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\left(1\right)\)
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)
đặt a/b = c/d = k (k thuộc N)
=> a = bk
c = dk
thay a và c vào 2 phân số cần so sánh thì = nhau
Giải:
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)
\(\Rightarrow x=ak,y=bk,z=ck\)
Ta có:
\(\left(x+y+z\right)^2=\left(ak+bk+ck\right)^2=\left[k\left(a+b+c\right)\right]^2=\left(k.1\right)^2=k^2\) (1)
\(x^2+y^2+z^2=\left(ak\right)^2+\left(bk\right)^2+\left(ck\right)^2=a^2.k^2+b^2.k^2+c^2.k^2=\left(a^2+b^2+c^2\right).k^2=1.k^2=k^2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\left(đpcm\right)\)
a/\(\left(2-x\right)\times-3=\left(3x-1\right)\times4\)4
\(\Rightarrow-6+3x=12x-4\)
\(\Rightarrow-2=9x\)
\(\Rightarrow x=\frac{-2}{9}\)
bài b cx tương tự nha
ta có;\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)(THEO TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU)
\(\Rightarrowđpcm\)
Ta có: \(\frac{a}{c}=\frac{c}{b}\Rightarrow ab=c^2\)
Ta lại có:
\(\frac{a^2+c^2}{b^2+c^2}\Rightarrow\frac{a^2+ab}{b^2+ab}\Rightarrow\frac{a.\left(a+b\right)}{b.\left(a+b\right)}=\frac{a}{b}\)
Từ \(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a}{b}=\frac{a^2+c^2}{c^2+b^2}\)