K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2015

\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow c^2=ab\)

\(\Rightarrow\frac{b^2-a^2}{a^2+c^2}=\frac{\left(b-a\right)\left(b+a\right)}{a^2+ab}=\frac{\left(b-a\right)\left(b+a\right)}{a\left(a+b\right)}=\frac{b-a}{a}\)

22 tháng 11 2016

Từ giả thiết ta suy ra ab=c2

Thay số vào ta có : \(\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(b+a\right)}=\frac{a}{b}\)

=> đcpcm

__cho_mình_nha_chúc_bạn_học _giỏi__ 

22 tháng 11 2016

\(THANKS\)\(VERY\)\(MUCH\)

27 tháng 9 2016

a/ \(\frac{a+b}{a-b}-\frac{c+a}{c-a}=\frac{\left(a+b\right)\left(c-a\right)-\left(c+a\right)\left(a-b\right)}{\left(a-b\right)\left(c-a\right)}=.\)

\(=\frac{\left(ac-a^2+bc-ab\right)-\left(ac-bc+a^2-ab\right)}{\left(a-b\right)\left(c-a\right)}=\frac{2bc-2a^2}{\left(a-b\right)\left(c-a\right)}=\)

\(=\frac{2bc-2bc}{\left(a-b\right)\left(c-a\right)}=0\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

b/ \(=\frac{bc+c^2}{b^2+bc}=\frac{c\left(b+c\right)}{b\left(b+c\right)}=\frac{c}{b}\) (dpcm)

10 tháng 12 2019

em hãy thay b2=ac vào biểu thức trên :

ta đổi được:

=a2+ac / ac+c2

=a *(a+c) / c *(a+c)

rút gon a+c ta được :a/c

tự kết luận nha 

chúc em học tốt

Y
23 tháng 5 2019

+ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

+ \(\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\) \(\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)

+ \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^2}{c^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

\(\Rightarrow\frac{a\cdot b}{c\cdot d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

\(\Rightarrow\frac{a}{b}\cdot\frac{a}{b}=\frac{a^2+c^2}{b^2+d^2}\Rightarrow\frac{a\cdot c}{b\cdot d}=\frac{a^2+c^2}{b^2+d^2}\)

câu cuối lm tương tự

1 tháng 11 2015

Ta có\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\) (1)

Ta lại có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)(2)

Từ 1 và 2 \(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

1 tháng 11 2015

Ta có: \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)

=>\(\frac{a}{c}.\frac{b}{d}=\frac{a}{c}.\frac{a}{c}=>\frac{ab}{cd}=\frac{a^2}{c^2}\)

\(\frac{a}{c}.\frac{b}{d}=\frac{b}{d}.\frac{b}{d}=>\frac{ab}{cd}=\frac{b^2}{d^2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)

=>\(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)

20 tháng 12 2016

đặt k nha bạn dể thôi

Phan Tất Khang lừa đảo đó