Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\)
Mà \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
Nên \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)
1. a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó \(\frac{a}{3a+b}=\frac{bk}{3bk+b}=\frac{bk}{b\left(3k+1\right)}=\frac{k}{3k+1}\left(1\right)\)
\(\frac{c}{3c+d}=\frac{dk}{3dk+d}=\frac{dk}{d\left(3k+1\right)}=\frac{k}{3k+1}\left(2\right)\)
Từ (1) và (2) => \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
c,
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó \(\frac{ab}{cd}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\) (3)
\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
@@ Học tốt
Chiyuki Fujito
Ta có: c2=ab
(b2-a2)/(a2+c2)=(b2-a2)/(a2+ab)
= (b-a)(b+a)/a(a+b)= (b-a)/a => đpcm
Ta có :
\(\dfrac{a}{b} = \dfrac{b}{c} => \dfrac{a^2}{b^2} =\dfrac{b^2}{c^2} \) \(= \dfrac{a.b}{b.c} = \dfrac{a}{c} (1)\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\dfrac{a^2}{b^2} =\dfrac{b^2}{c^2} =\dfrac{a^2+b^2}{b^2+c^2} (2)\)
Từ (1) và (2) => \(\dfrac{a^2+b^2}{b^2+c^2} = \dfrac{a}{c}\) (đpcm)
1/
Từ \(a-b=2\left(a+b\right)\Rightarrow a-b=2a+2b\Rightarrow a-2a=2b+b\Rightarrow-a=3b\Rightarrow a=-3b\)
\(\Rightarrow\frac{a}{b}=\frac{-3b}{b}=-3\)
\(\Rightarrow\hept{\begin{cases}a-b=-3\\2\left(a+b\right)=-3\end{cases}\Rightarrow\hept{\begin{cases}a-b=-3\\a+b=-\frac{3}{2}\end{cases}}}\)
\(\Rightarrow a-b+a+b=-3-\frac{3}{2}\Rightarrow2a=\frac{-9}{2}\Rightarrow a=\frac{-9}{4}\)
Có: \(a-b=-3\Rightarrow b=a+3\Rightarrow b=\frac{-9}{4}+3=\frac{3}{4}\)
Vậy a=-9/4,b=3/4
2/ Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak,y=bk,z=ck\)
Ta có: \(\frac{bx-ay}{a}=\frac{bak-abk}{a}=0\left(1\right)\)
\(\frac{cx-az}{y}=\frac{cak-ack}{y}=0\left(2\right)\)
\(\frac{ay-bx}{c}=\frac{abk-bak}{c}=0\left(3\right)\)
Từ (1),(2),(3) => đpcm
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\)a=bk , c=dk
Ta có:
\(\left(\frac{a+b}{c+d}\right)^2=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\)\(\frac{\left(b\left(k+1\right)\right)^2}{\left(d\left(k+1\right)\right)^2}=\frac{b^2\times\left(k+1\right)^2}{d^2\times\left(k+1\right)^2}=\frac{b^2}{d^2}\)( 1 )
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2\times k^2+b^2}{d^2\times k^2+d^2}\)= \(\frac{b^2\times\left(k^2+1\right)}{d^2\times\left(k^2+1\right)}=\frac{b^2}{d^2}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)(dpcm)
* Giả sử tất cả các tỷ lệ thức đều có nghĩa.
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\times\frac{b}{d}=\frac{b}{d}\times\frac{b}{d}\Rightarrow\frac{ab}{cd}=\frac{b^2}{d^2}=\frac{a^2}{c^2}=\frac{2ab}{2cd}\)
\(=\frac{a^2+2ab+b^2}{c^2+2cd+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)(ĐPCM)
ta cs a/b=c/d=>a/c=b/d
=>2a+3b/2c+3d=3a-4b/3c-4d
=>2a+3b/3a-4b=2c+3d/3c-4d
=>bai toan dc c/m
Cau b tuong tu nha ban
don't forget tick me
a) Ta có \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}\) (1).
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{2a+3b}{2c+3d}=\frac{3a-4b}{3c-4d}.\)
\(\Rightarrow\frac{2a+3b}{3a-4b}=\frac{2c+3d}{3c-4d}\left(đpcm\right).\)
Chúc bạn học tốt!
Giải:
Ta có: \(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{b^2+c^2}\) (1)
Mà \(\frac{a}{c}.\frac{c}{b}=\frac{a}{b}=\frac{a^2}{b^2}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\left(đpcm\right)\)
Ta có:\(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{c}{b}=\frac{a}{b}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a}{b}=\frac{a^2+c^2}{c^2+b^2}\)(đpcm)