K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2018

đặt a/b=c/d=k =>a=bk;c=dk

A)thay a và c vào (3a+2c)/(3b+2d)và (-5a+3c)/(-5b+3d)

+)(3bk+2dk)/(3b+2d)=k

+)(-5bk+3dk)/(-5b+3d)=k

vậy.....................................................................................................

B)thay a=bk;c=dk vào 2 biểu trên ta có

+)(bk-b)/b=k-1

+)(dk-d)/d=k-1

(bạn sai đề bài r chỗ a-d thành a-b)

27 tháng 6 2016

Tick undefinedmk nha

9 tháng 3 2016

Cộng 1 vào mỗi phân số của B rồi trừ 3 đi là đd

19 tháng 4 2017

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{\left(a+b+c\right)}=\frac{9}{1}=9\\ \)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)Hết => không điểm => DBNT 

22 tháng 4 2017

Bài làm của bạn kia chưa chặt chẽ! Mà cho mình hỏi DBNT là gì vậy? :)

Giải:

Áp dụng BĐT Cô si cho 3 số dương:

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Nhân theo vế 2 BĐT trên ta được:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{1}=9\)

Vậy \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\) (Đpcm)

30 tháng 9 2019

Chúc em may mắn :Đ

30 tháng 9 2019

Ta có: \(\frac{a+b}{c+d}=\frac{b+c}{d+a}\Rightarrow\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

Áp dụng dãy tỉ số bằng nhau:

\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{b+c+d+a}=1\)

=> \(a+b=b+c\Rightarrow a=c\)