\(\frac{a}{b}=\frac{c}{d}\)

cmr : \(\left(\frac{a+b}{c+d}\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2016

Từ; \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áps dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\)(1)

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)(2)

Từ (1) và (2) =>\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

9 tháng 2 2016

vì a/b = c/d suy ra a + b/c+d = a/b = c/d suy ra a^2 / b^2 = c^2 / d^2 = (a+b/ c+d) ^2

áp dụng tính chất dãy tỉ số bằng nhau ta có :

 a^2 / b^2 = c^2 / d^2 = ( a+b/c+d)^2 = a^2 + b^2 / c^2+ d^2 ( đpcm)

31 tháng 5 2017

Áp đụng tính chất dãy tỷ số bằng nhau ta được

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)

Ta lại có: 

\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

31 tháng 5 2017

Ta có:

+) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)(1)

+) \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)(2)

Từ (1)(2)

\(\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(dpcm\right)\)

Bài 1: D

Bài 2:

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}\pm1=\frac{c}{d}\pm1\)

\(\Rightarrow\frac{a\pm b}{b}=\frac{c\pm d}{d}\)(đpcm)

31 tháng 1 2016

a/b=c/d=a/c=b/d=a+b/c+d=(a+b)^2/(c+d)^2=(a+b/c+d)^2 (1)

a/b=c/d=a/c=b/d=(a/c)^2=(b/d)^2=a^2/c^2=b^2/d^2=a^2+b^2/c^2+d^2 (2)

(1),(2)=> (a+b/c+d)^2=a^2+b^2/c^2+d^2

10 tháng 7 2018

Ta có : \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Ta có : \(\frac{a\cdot b}{cd}=\frac{bk\cdot b}{dk\cdot d}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\)

Ta lại có : \((\frac{a-b}{c-d})^2=\frac{k^2\cdot b^2-b^2}{k^2\cdot d^2-d^2}=\frac{b^2(k-1)}{d^2(k-1)}=\frac{b^2}{d^2}\)

Vậy : \((\frac{a-b}{c-d})^2=\frac{ab}{cd}\)

10 tháng 7 2018

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a}{c}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}=\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\)

                                                                       đpcm

24 tháng 8 2016

\(\frac{a}{b}=\frac{c}{d}\)=\(\frac{a}{c}=\frac{b}{d}\)=>\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)(2)

                                       =>\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)(3)

                                      =>\(\frac{a+b}{c+d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(4)

=>Từ (1),(2),(3),(4)=>\(\frac{a}{b}=\frac{a^2-b^2}{c^2-d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(đpcm)

24 tháng 8 2016

chứng minh này chị ngu lắm em

12 tháng 8 2016

\(\left(\frac{a+b}{c+d}\right)^2\) \(=\frac{a.a+b.b}{c\cdot c+d.d}\)\(=\frac{a^2+b^2}{c^2+d^2}\)

\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2\) \(=\frac{a^2+b^2}{c^2+d^2}\)

27 tháng 10 2016

Đề còn thiếu \(\frac{a}{b}=\frac{c}{d}\)

Giải:

Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

=>\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\)

Ta lại áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\left(\frac{a+b}{c+d}\right)^2\)

Vậy ta có đpcm