Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có: \(\frac{7a-4b}{3a+5b}=\frac{7bk-4b}{3bk-5b}=\frac{b\left(7k-4\right)}{b\left(3k-5\right)}=\frac{7k-4}{3k-5}\)(1)
\(\frac{7c-4d}{3c+5d}=\frac{7dk-4d}{3dk+5d}=\frac{d\left(7k-4\right)}{d\left(3k+5\right)}=\frac{7k-4}{3k+5}\)(2)
Từ (1) và (2) suy ra \(\frac{7a-4b}{3a+5b}=\frac{7c-4d}{3c+5d}\)(đpcm)
ta có:
\(\frac{7a-11b}{4a+5b}=\frac{7c-11d}{4c+5d}\)
\(\Rightarrow\frac{7a-11b}{7c-11d}=\frac{4a+5b}{4c+5d}\)
\(\Leftrightarrow\frac{7a}{7c}=\frac{11b}{11d}=\frac{4a}{4c}=\frac{5b}{5d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Mặt khác:
\(\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrowđpcm\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{4a+2b}{4a+2d}\left(1\right)\)
\(\frac{a}{c}=\frac{b}{d}=\frac{7a-5b}{7c-5d}\left(2\right)\)
Từ (1)(2) => đpcm
1/
a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{5b}{5d}=\frac{3a+5b}{3c+5d}=\frac{3a-5b}{3c-5d}\Rightarrow\frac{3a+5b}{3a-5b}=\frac{3c+5d}{3c-5d}\)
b,\(\frac{a}{b}=\frac{c}{d}=\frac{4a}{4b}=\frac{7c}{7d}=\frac{4a+7c}{4b+7d}\)
2/
Gọi số học sinh tham gia của mỗi lớp lần lượt là a,b,c
Ta có: \(2a=3b=4c\)
\(\Rightarrow\frac{2a}{12}=\frac{3b}{12}=\frac{4c}{12}\Rightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{a+b+c}{6+4+3}=\frac{130}{13}=10\)
=> a/6 = 10 => a = 60
b/4 = 10 => b = 40
c/3 = 10 => c = 30
Vậy số học sinh mỗi lớp lần lượt là 60 hs, 40 hs, 30hs
a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{7a^2}{7c^2}=\frac{3b^2}{3d^2}=\frac{3ab}{3cd}=\frac{11a^2}{11c^2}=\frac{5b^2}{5d^2}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{7a^2}{7c^2}=\frac{3b^2}{3d^2}=\frac{3ab}{3cd}=\frac{11a^2}{11c^2}=\frac{5b^2}{5d^2}=\frac{7a^2+3ab}{7b^2+3cd}=\frac{11a^2-5b^2}{11c^2-5d^2}\)
\(\Rightarrow\frac{7a^2+3ab}{11a^2-5b^2}=\frac{7c^2+3cd}{11c^2-5d^2}\)
b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}\)
áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}=\left(\frac{a+b}{c+d}\right)^4\)(1)
\(\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{a^4+b^4}{c^4+d^4}\)(2)
từ (1) và (2) => đpcm
c) áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\frac{a^2}{b^2}=\left(\frac{a+c}{b+d}\right)^2\)(1)
\(\frac{a^2}{b^2}=\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{c}{d}=\frac{ac}{bd}\)(2)
từ (1) và (2) => đpcm
\(\frac{3a+5b}{3a-5b}=\frac{3c+5d}{3c-5d}\)
=> (3a + 5b)(3c - 5d) = (3a - 5b)(3c + 5d)
=> 9ac - 15ad + 15bc - 25bd = 9ac + 15ad - 15bc - 25bd
=> 9ac - 15ad + 15bc - 25bd - (9ac + 15ad - 15bc - 25bd) = 0
=> 9ac - 15ad + 15bc - 25bd - 9ac - 15ad + 15bc + 25bd = 0
=> (9ac - 9ac) + (-15ad - 15ad) + (15bc + 15bc) + (-25bd + 25bd) = 0
=> -30ad + 30bc = 0
=> -30ad = -30bc
=> ad = bc
=> \(\frac{a}{b}=\frac{c}{d}\)
ĐK: \(b,d\ne0\)
+) Với a = 0 <=> c = 0
=> \(\frac{7.0+5b}{7.0-5b}=\frac{7.0+5d}{7.0-5d}\)luôn đúng
+) Với \(a,c\ne0\)
Từ: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{7a}{7c}=\frac{5b}{5d}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{7a}{7c}=\frac{5b}{5d}=\frac{7a-5d}{7c-5d}=\frac{7a+5d}{7c+5d}\)
=> \(\frac{7a+5d}{7a-5d}=\frac{7c+5d}{7c-5d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow a=bk\), \(c=dk\)
Ta có: \(\frac{7a+5b}{7a-5b}=\frac{7bk+5b}{7bk-5b}=\frac{b\left(7k+5\right)}{b\left(7k-5\right)}=\frac{7k+5}{7k-5}\)
mà \(\frac{7c+5d}{7c-5d}=\frac{7dk+5d}{7dk-5d}=\frac{d\left(7k+5\right)}{d\left(7k-5\right)}=\frac{7k+5}{7k-5}\)
\(\Rightarrow\frac{7a+5b}{7a-5b}=\frac{7c+5d}{7c-5d}\left(đpcm\right)\)