\(\frac{a}{b}\)=\(\frac{c}{d}\).Cm 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2019

Ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{2a}{2c}=\frac{b}{d}\Rightarrow\frac{a}{c}=\frac{2b}{2d}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{2a}{2c}=\frac{b}{d}=\frac{2a-b}{2c-d}\)\(\left(1\right)\)và \(\frac{a}{c}=\frac{2b}{2d}=\frac{a+2b}{c+2d}\)\(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{2a-b}{2c-d}=\frac{a+2b}{c+2d}\)

                                \(\Rightarrow\frac{2a-b}{a+2b}=\frac{2c-d}{c+2d}\)\(\left(đpcm\right)\)

Lập luận không chắc !

14 tháng 10 2019

\(\text{Ta có: }\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{2b}{2d}\)

\(\text{Áp dụng t/c dãy tỉ số bằng nhau, ta có:}\)

\(\cdot\frac{2a}{2c}=\frac{b}{d}=\frac{2a-b}{2c-d}\)

\(\cdot\frac{a}{c}=\frac{2b}{2d}=\frac{a+2b}{c+2d}\)

\(\text{Mà }\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{2b}{2d}\)

\(\Rightarrow\frac{2a-b}{2c-d}=\frac{a+2b}{c+2d}\)

\(\text{Vậy: }\frac{2a-b}{a+2b}=\frac{2c-d}{c+2d}\left(\text{ĐPCM}\right)\)

4 tháng 11 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

=> a = b = c = d

=> \(D=\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}\)

D = 1 + 1 + 1 + 1 = 4

26 tháng 7 2019

a, \(\frac{a}{b}=\frac{2a}{2b}=\frac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{2a}{2b}=\frac{c}{d}=\frac{2a+c}{2b+d}\)

Tương tự, bạn áp dụng tính chất dãy tỉ số bằng nhau là rahaha

26 tháng 7 2019

cảm ơn bạn nhiều

8 tháng 1 2018

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{a}=\frac{a+c+b+d}{b+d+c+a}=1\)

\(\Rightarrow a=b=c=d\)

Vậy \(A=\frac{2a-b}{2a+b}+\frac{2b-c}{2b+c}+\frac{2c-d}{2c+d}+\frac{2d-a}{2d+a}=\frac{1}{3}.4=\frac{4}{3}\)

20 tháng 8 2016

Câu 1:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1.\)(T/c dãy tỷ số bằng nhau)

Suy ra:

\(\frac{a}{b}=1\Rightarrow a=b\)

\(\frac{b}{c}=1\Rightarrow b=c\)

\(\frac{c}{d}=1\Rightarrow c=d\)

\(\frac{d}{a}=1\Rightarrow d=a\)

Theo t/c bắc cầu => \(a=b=c=d\)

Câu 2: Do \(a=b=c=d\) nên

\(M=\frac{a+2a}{a}+\frac{b+2b}{b}+\frac{c+2c}{c}+\frac{d+2d}{d}=3+3+3+3=12\)

20 tháng 8 2016

Ta dễ dàng thấy b= d2

a2 = c

b= ac

Từ đó thấy a = b = c = d

Từ đó ta có M = 3 + 3 +  3 + 3 = 12

6 tháng 9 2020

a) \(\hept{\begin{cases}\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\\\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{3a}{3c}=\frac{2b}{2d}=\frac{3a+2b}{3c+2d}\end{cases}}\)

\(\Rightarrow\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\)

\(\Rightarrow\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\)

b) Chứng minh tương tự 

6 tháng 9 2020

ko biet nghen

10 tháng 8 2020

Ta có :\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)

=> (2a + b)(c - 2d) = (a - 2b)(2c + d)

=> 2ac - 4ad + bc - 2bd = 2ac + ad - 4bc  - 2bd

=> -4ad + bc = ad - 4bc

=> -4ad - ad = -4bc - bc

=> -5ad = - 5bc

=> ad = bc

=> \(\frac{a}{b}=\frac{c}{d}\)(đpcm)

10 tháng 8 2020

Theo bài ra ta có : 

\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Leftrightarrow\left(2a+b\right)\left(c-2d\right)=\left(2c+d\right)\left(a-2b\right)\)

\(\Leftrightarrow2ac-4ad+bc-2db=2ca-4bc+da-2bd\)

\(\Leftrightarrow-5ad+5bc=0\Leftrightarrow-5ab=-5bc\)

\(\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

20 tháng 10 2018

Q= (Q+1) -(1-Q)

good luck!

2 tháng 6 2016

OK:

Trừ 1 ở mỗi tỉ số,ta có:

\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1\)\(=\frac{a+b+c+2d}{d}-1\)

=>\(\frac{2a+b+c+d-a}{a}=\frac{a+2b+c+d-b}{b}\)\(=\frac{a+b+2c+d-c}{c}=\frac{a+b+c+2d-d}{d}\)

=>\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Do đó a=b=c=d

=>\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\)\(\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)

Vậy M=4

 

1 tháng 6 2016

Mik thấy đề đúng màlolang

 

26 tháng 11 2016

Ta có: a/b=b/c=c/d=d/a áp dụng tính chất dãy tỉ số bằng nhau ta được:

a/b=b/c=c/d=d/a=(a+b+c+d)/(a+b+c+d)=1

Do đó: a/b=1 suy ra a=b (1) ; b/c=1 suy ra b=c (2) ; c/d=1 suy ra c=d (3) ; d/a=1 suy ra d=a (4)

Từ (1),(2),(3),(4) ta được: a=b=c=d

Suy ra:P=(2a-a)/(a+a)+(2a-a)/(a+a)+(2a-a)/(a+a)+(2a+a)/(a+a)

=4.a/2a=4.1/2=2

Vậy P=2

26 tháng 11 2016

thanks ban nha