\(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng : \(\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2020

bài 1 sai đề ko bạn

16 tháng 1 2020

đề nào và mình ghi sai thứ tự bài

17 tháng 9 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)

\(VT=\frac{a^2+ac}{c^2-ac}=\frac{\left(bk\right)^2+bkdk}{\left(dk\right)^2-bkdk}=\frac{b^2k^2+bdk^2}{d^2k^2-bdk^2}=\frac{k^2\left(b^2+bd\right)}{k^2\left(d^2-bd\right)}=\frac{b^2+bd}{d^2-bd}=VP\)

=>Đpcm

17 tháng 9 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có:

\(\frac{a^2+ac}{c^2-ac}=\frac{\left(bk\right)^2+bkdk}{\left(dk\right)^2-bkdk}=\frac{b^2.k^2+b.d.k^2}{d^2.k^2-b.d.k^2}=\frac{b.k^2\left(b+d\right)}{d.k^2\left(d-b\right)}=\frac{b\left(b+d\right)}{d\left(d-b\right)}\) (1)

\(\frac{b^2+bd}{d^2-bd}=\frac{b\left(b+d\right)}{d\left(d-b\right)}\) (2)

Từ (1) và (2) suy ra \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\) ( đpcm )

21 tháng 2 2019

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}.Đặt:a=ck;b=dk\)

\(\Rightarrow\frac{a^2+ac}{c^2-ac}=\frac{c^2k^2+c^2k}{c^2-kc^2}=\frac{c^2\left(k^2+k\right)}{c^2\left(1-k\right)}=\frac{k^2+k}{1-k}\)

\(\frac{b^2+bd}{d^2-bd}=\frac{d^2k^2+kd^2}{d^2-kd^2}=\frac{d^2\left(k^2+k\right)}{d^2\left(1-k\right)}=\frac{k^2+k}{1-k}\)

\(\Rightarrow\frac{b^2+bd}{d^2-bd}=\frac{a^2+ac}{c^2-ac}\left(\text{đpcm}\right)\)

21 tháng 2 2019

Ta có \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)

 \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\Leftrightarrow ad\left(a+c\right)\left(d-b\right)=bc\left(b+d\right)\left(c-a\right)\)

Rút gọn ad với bc \(\Rightarrow\left(a+c\right)\left(d-b\right)=\left(b+d\right)\left(c-a\right)\)

\(\Leftrightarrow ad+cd-ab-bc=bc+cd-ab-ad\)

Rút gọn 2 vế ta đc 0=0 

vì 0=0 luôn đúng nên cái phương trình trên luôn đúng

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)

Do đó: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

27 tháng 3 2019

Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a\cdot b}{c\cdot d}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)

27 tháng 3 2019

đặt \(\frac{a}{b}\)=\(\frac{c}{d}\)=k =>a=bk; c=dk

xét: \(\frac{ab}{cd}\)=\(\frac{bk.b}{dk.d}\)=\(\frac{b^2}{d^2}\)

\(\frac{a^2-b^2}{c^2-d^2}\)=\(\frac{b^2k^2-b^2}{d^2k^2-d^2}\)=\(\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}\)=\(\frac{b^2}{d^2}\)

=> \(\frac{ab}{cd}\)=\(\frac{a^2-b^2}{c^2-d^2}\)đpcm

tương tự

xét:  \(\left(\frac{a+b}{c+d}\right)^2\)=\(\left(\frac{bk+b}{dk+d}\right)^2\)=\(\left(\frac{b\left(k+1\right)}{d\left(k+1\right)}\right)^2\)=\(\frac{b^2}{d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{b^2k^2+b^2}{d^2k^2+d^2}\)=\(\frac{b^2\left(k+1\right)}{d^2\left(k+1\right)}\)=\(\frac{b^2}{d^2}\)

=> \(\left(\frac{a+b}{c+d}\right)^2\)=\(\frac{a^2+b^2}{c^2+d^2}\)đpcm

6 tháng 6 2015

ta có: a/b = c/d = (a + c)/ (b + d) = (c - a)/ (d - b)

điều cần chứng minh là:   

(a2  + ac) / (c2 - ac) = (b2 + bd) / (d2 - bd)     => (a2 + ac) / (b2 + bd)  = (c2 - ac) / (d2 - bd) 

                                                               = a (a + c) /  b (b + d)   = c (c - a)  / d (d - b)

mà theo chứng minh trên ta có:

a/b = c/d ; (a + c)/ (b + d) = (c - a)/ (d - b)

từ đó ta  =>   (a+ ac) / (c2 - ac) = (b2 + bd) / (d2 - bd)         (đpcm)

24 tháng 12 2018

Từ \(b^2=ac\)\(\Rightarrow\frac{b}{a}=\frac{c}{b}\)(1)

Từ \(c^2=bd\)\(\Rightarrow\frac{c}{b}=\frac{d}{c}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{b}{a}=\frac{c}{b}=\frac{d}{c}\)

\(\Rightarrow\left(\frac{b}{a}\right)^3=\left(\frac{c}{b}\right)^3=\left(\frac{d}{c}\right)^3=\frac{b^3}{a^3}=\frac{c^3}{b^3}=\frac{d^3}{c^3}=\frac{b^3+c^3+d^3}{a^3+b^3+c^3}\)

mà \(\left(\frac{b}{a}\right)^3=\frac{b}{a}.\frac{b}{a}.\frac{b}{a}=\frac{b}{a}.\frac{c}{b}.\frac{d}{c}=\frac{b.c.d}{a.b.c}=\frac{d}{a}\)

\(\Rightarrow\frac{b^3+c^3+d^3}{a^3+b^3+c^3}=\frac{d}{a}=\left(\frac{b}{a}\right)^3\left(đpcm\right)\)

24 tháng 12 2018

Bạn giải thích cho mk là vì sao \(\frac{b}{a}=\frac{b}{a}=\frac{b}{a}=\frac{b}{a}.\frac{c}{b}.\frac{d}{c}\)  với ạ? Mk k hiểu chỗ này

10 tháng 2 2016

tính chất dãy tỉ số=nhau

10 tháng 2 2016

ta có: a/b = c/d = (a + c)/ (b + d) = (c - a)/ (d - b)

điều cần chứng minh là:   

(a2  + ac) / (c2 - ac) = (b2 + bd) / (d2 - bd)     => (a2 + ac) / (b2 + bd)  = (c2 - ac) / (d2 - bd) 

                                                               = a (a + c) /  b (b + d)   = c (c - a)  / d (d - b)

mà theo chứng minh trên ta có:

a/b = c/d ; (a + c)/ (b + d) = (c - a)/ (d - b)

từ đó ta  =>   (a+ ac) / (c2 - ac) = (b2 + bd) / (d2 - bd)         (đpcm)