\(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng \(\frac{a^{1994}+c^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2015

\(\frac{a}{b}=\frac{c}{d}\)=\(\frac{a+c}{b+d}\)

=> \(\frac{a^{1994}}{b^{1994}}=\frac{c^{1994}}{d^{1994}}\)\(=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}\)

=> \(\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}\)

=> dpcm

11 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^{1994}}{b^{1994}}=\frac{c^{1994}}{d^{1994}}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\frac{a^{1994}}{b^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}\)(1)

\(\frac{a^{1994}}{b^{1994}}=\frac{c^{1994}}{d^{1994}}=\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}\)(2)

từ (1) và (2) => \(\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}\left(đpcm\right)\)

\(\)

1 tháng 10 2015

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{a^{1994}}{b^{1994}}=\frac{c^{1994}}{d^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}=\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}=\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}\)

=> Đpcm


Câu 2 tớ đăng phía dưới rồi đó.

Câu 3 đang định đăng lên thì cậu đăng là sao hả?

5 tháng 8 2019

a, Ta có: \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\Rightarrow a=kb;c=kd\)

Thay:

\(\frac{ab}{cd}=\frac{b^2}{d^2}\)

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\)

=> đpcm

24 tháng 6 2017

\(D=|x-1|+|x-4|=|x-1|+|4-x|\ge|x-1+4-x|=3\)

\(B=|1993-x|+|1994-x|=|1993-x|+|x-1994|\ge|1993-x+x-1994|=1\)

\(C=x^2+|y-2|-5\ge-5\)

24 tháng 6 2017

Để D nhỏ nhất => I x-1I bé nhất hoặc I x-4I bé nhất => x-1 =0 hoặc x-4=0

=> x= 1 hoặc x=4 

Vậy GTNN của D là: I 1-4I = 3 tại x= 1 hoặc x=4

B tương tự

Để C nhỏ nhất => x^2 bé nhất và I y - 2I bé nhất => x^2 = 0 và y-2 = 0

x= 0 và y=2

VaayjGTNN của C là -5 tại x=0 và y=2