Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nhân cả hai vế với b, ta có đpcm
b) Đề sai
c) Nhân cả hai vế với b, ta có đpcm
d) Bạn trên đã làm r , mình k trình bày lại nữa
d,
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\) \(a=k\times b\) ; \(c=k\times d\)
Ta có :
\(\frac{a^2}{b^2}=\frac{\left(k\times b\right)^2}{b^2}=\frac{k^2\times b^2}{b^2}=k^2\) (1)
\(\frac{c^2}{d^2}=\frac{\left(k\times d\right)^2}{d^2}=\frac{k^2\times d^2}{d^2}=k^2\) (2)
\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(k\times b\right)^2+\left(k\times d\right)^2}{b^2+d^2}=\frac{k^2\times b^2+k^2\times d^2}{b^2+d^2}=\frac{k^2\times\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (3)
Từ (1) ; (2) và (3) => \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
Ta có : \(\frac{a}{b}=\frac{c}{d}\)
Nên \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
Suy ra : \(\frac{a}{c}=\frac{a-b}{c-d}\)
Vậy : \(\frac{a-b}{a}=\frac{c-d}{c}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=>a=bk,c=dk
a,Ta có \(\frac{a-b}{a}-\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}\frac{k-1}{k}.1\)
Tương tự ta có \(\frac{c-d}{c}=\frac{k-1}{k}.2\)
Từ (1) và (2) suy ra đều phải chứng minh .
b,Ta có \(\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}.3\)
Tương tự ta có \(\frac{a-b}{c-b}=\frac{b}{d}.4\)
Từ (3) và (4) suy ra đều phải chứng minh
Đặt: \(\frac{a}{b}=\frac{c}{d}=k\)(*)
=> a=bk, c=dk.
Từ đó ta có : \(\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)(**)
Và: \(\frac{a-c}{b-d}=\frac{bk-dk}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\)(***)
Từ (*),(**) và (***) suy ra : \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
Ta có :
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}\left(1\right)}\)
Thay vào biểu thức \(\frac{a+c}{b+d}\) ta có :
<=> \(\frac{bk+dk}{b+d}\Leftrightarrow\frac{k\left(b+d\right)}{b+d}=k\left(2\right)\)
Thay vào biểu thức \(\frac{a-c}{b-d}\) ta có:
<=> \(\frac{bk-dk}{b-d}\Leftrightarrow\frac{k\left(b-d\right)}{b-d}=k\left(3\right)\)
Từ (1) ,(2) và (3) => đpcm
Vì \(\frac{a}{b}< \frac{c}{d}\)
⇒ \(ad< bc\)
⇒ \(2018ad< 2018bc\)
⇒ \(2018ad+cd< 2018bc+cd\)
⇒ \(\left(2018a+c\right)d< \left(2018b+d\right)c\)
⇒ \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\)
Vậy \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\) (ĐPCM)
Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}.bd< \frac{c}{d}.bd\)
\(\Rightarrow ad< bc\)
\(\Rightarrow2002ad< 2002bc\)
\(\Rightarrow2002ad+cd< 2002bc+cd\)
\(\Rightarrow\left(2002a+c\right).d< \left(2002b+d\right).c\)
Chia cả hai vế cho \(\left(2002b+d\right).d\) ta có :
\(\frac{2002a+c}{2002b+d}< \frac{c}{d}\)
Vậy...
Vì \(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad< bc\)
\(\Rightarrow2002ad< 2002bc\)
\(\Rightarrow2002ad+cd< 2002bc+cd\)
\(\Rightarrow\left(2002a+c\right)d< \left(2002b+d\right)c\)
\(\Rightarrow\frac{2002a+c}{2002b+d}< \frac{c}{d}\)
Mình chắc chắn 100% luôn. Mong các bạn .
Bài 1: D
Bài 2:
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}\pm1=\frac{c}{d}\pm1\)
\(\Rightarrow\frac{a\pm b}{b}=\frac{c\pm d}{d}\)(đpcm)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\Leftrightarrow1:\frac{a+b}{b}=1:\frac{c+d}{d}\Leftrightarrow\frac{b}{a+b}=\frac{d}{c+d}\)
Bài sau tương tự trừ 1 xong rồi lấy 1 chia cho 2 vế đó là ra
Ủng hộ nha cảm ơn
CHÚC BẠN HỌC TỐT
a, Đặt \(\frac{a}{b}=\frac{c}{d}\)\(=k\)
\(\Rightarrow a=bk\)\(;\)\(c=dk\)
Ta có : \(\frac{b}{a+b}=\frac{b}{bk+b}\)\(=\frac{1}{k+1}\left(1\right)\)
\(\frac{d}{c+d}=\frac{d}{dk+d}\)\(=\frac{1}{k+1}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\)\(\frac{b}{a+b}=\frac{d}{c+d}\)(ĐPCM)
b, Tương tự a \(\Rightarrow\frac{b}{a-b}=\frac{1}{k-1}=\frac{d}{c-d}\)(ĐPCM)