Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta cs a/b=c/d=>a/c=b/d
=>2a+3b/2c+3d=3a-4b/3c-4d
=>2a+3b/3a-4b=2c+3d/3c-4d
=>bai toan dc c/m
Cau b tuong tu nha ban
don't forget tick me
a) Ta có \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}\) (1).
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{2a+3b}{2c+3d}=\frac{3a-4b}{3c-4d}.\)
\(\Rightarrow\frac{2a+3b}{3a-4b}=\frac{2c+3d}{3c-4d}\left(đpcm\right).\)
Chúc bạn học tốt!
mk làm câu a thôi, b dài nhưng tương tự
Gọi a/b=c/d=k =>a=bk ; c=dk
=>\(\frac{\left(2a+3b\right)^2}{\left(3a-4b\right)^2}=\frac{\left(2bk+3b\right)^2}{\left(3bk-4b\right)^2}=\frac{\left[b\left(2k+3\right)\right]^2}{\left[b\left(3k-4\right)\right]^2}=\frac{b^2\left(2k+3\right)^2}{b^2\left(3k-4\right)^2}=\frac{\left(2k+3\right)^2}{\left(3k-4\right)^2}\)(1)
=>\(\frac{\left(2c+3d\right)^2}{\left(3c-4d\right)^2}=\frac{\left(2dk+3d\right)^2}{\left(3dk-4d\right)^2}=\frac{\left[d\left(2k+3\right)\right]^2}{\left[d\left(3k-4\right)\right]^2}=\frac{\left(2k+3\right)^2}{\left(3k-4\right)^2}\)(2)
Từ (1);(2)=> đpcm
Ta có: \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{b+a+d}=\frac{d}{c+b+a}\)
\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{b+a+d}+1=\frac{d}{c+b+a}+1\)
\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{b+a+d}=\frac{a+b+c+d}{c+b+a}\)
Mà a+b+c+d khác 0
=> b+c+d = a+c+d = b+a+d = c+b+a
=> b = a = c = d
Ta có:
\(P=\frac{2a+5b}{3c+4d}-\frac{2b+5c}{3d+4a}-\frac{2c+5d}{3a+4b}-\frac{2d+5a}{3c+4b}\)
\(P=\frac{2a+5a}{3a+4a}-\frac{2b+5b}{3b+4b}-\frac{2c+5d}{3c+4c}-\frac{2d+5d}{3d+4d}\)
\(P=\frac{7a}{7a}-\frac{7b}{7b}-\frac{7c}{7c}-\frac{7d}{7d}\)
\(P=1-1-1-1=-2\)
a. Câu hỏi của Nguyễn Ngọc Quế Anh - Toán lớp 7 - Học toán với OnlineMath