Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|x+\frac{1}{2}\right|=\frac{1}{3}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+\frac{1}{2}=\frac{1}{3}\\x+\frac{1}{2}=-\frac{1}{3}\end{cases}}\) \(\Leftrightarrow\)\(\orbr{\begin{cases}x=-\frac{1}{6}\\x=-\frac{5}{6}\end{cases}}\)
Vậy....
b) \(\left|x-\frac{1}{2}\right|=\frac{1}{3}-\frac{1}{2}\)
\(\Leftrightarrow\)\(\left|x-\frac{1}{2}\right|=-\frac{1}{6}\) vô lí do \(\left|a\right|\ge0\)
Vậy pt vô nghiệm
c) \(\left|x+\frac{1}{3}\right|-4=-1\)
\(\Leftrightarrow\)\(\left|x+\frac{1}{3}\right|=3\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+\frac{1}{3}=3\\x+\frac{1}{3}=-3\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{8}{3}\\x=-\frac{10}{3}\end{cases}}\)
Vậy..
d) \(\left|x-\frac{1}{5}\right|+\frac{1}{3}=\frac{1}{4}-\left|-\frac{3}{2}\right|\)
\(\Leftrightarrow\)\(\left|x-\frac{1}{5}\right|+\frac{1}{3}=-\frac{5}{4}\)
\(\Leftrightarrow\)\(\left|x-\frac{1}{5}\right|=-\frac{19}{12}\)vô lí do \(\left|a\right|\ge0\)với mọi a
Vậy pt vô nghiệm
e) \(\left|x-\frac{5}{2}\right|=\frac{4}{3}-\left(\frac{2}{3}-\frac{1}{2}\right)\)
\(\Leftrightarrow\)\(\left|x-\frac{5}{2}\right|=\frac{7}{6}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-\frac{5}{2}=\frac{7}{6}\\x-\frac{5}{2}=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=3\frac{2}{3}\\x=\frac{4}{3}\end{cases}}\)
Vậy...
Nhận thấy \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)
=> \(\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\forall x\)
Dấu "=" xảy ra <=> \(2x+\frac{1}{3}=0\Rightarrow x=-\frac{1}{6}\)
Vậy Min A = -1 <=> X = -1/6
a, \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\)
Dấu "=" xảy ra <=> 2x+1/3=0 <=> x= -1/6
a) \(\frac{2}{3}\left(\frac{1}{2}+\frac{3}{4}-\frac{1}{3}\right)\le\frac{x}{18}\)
\(\frac{x}{18}\le\frac{7}{3}\left(\frac{1}{2}-\frac{1}{6}\right)\)
tu tim x o 2 truong hop tren
b) de \(\frac{11}{2x+1}\) nguyen thi \(2x+1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
2x+1=-1 suy ra x=-1
2x+1=1 suy ra x=0
2x+1=11 suy ra x=5
2x+1=-11 suy ra x=-6
Vay de ......thi x thuoc {-1;0;5;6}
a)\(\frac{5}{2}-3\left(\frac{1}{3}-x\right)=\frac{1}{4}-7x\)
\(\Leftrightarrow\frac{5}{2}-1+x=\frac{1}{4}-7x\)
\(\Leftrightarrow8x=-\frac{5}{4}\)
\(\Leftrightarrow x=-\frac{5}{32}\)
c)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)
\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2003}\)
\(\Leftrightarrow x+1=2003\)
\(\Leftrightarrow x=2002\)
1)
a)
\(\frac{-5}{6}.\frac{120}{25}< x< \frac{-7}{15}.\frac{9}{14}\)
\(\frac{-1}{1}.\frac{20}{5}< x< \frac{-1}{5}.\frac{3}{2}\)
\(\frac{-20}{5}< x< \frac{-3}{10}\)
\(\frac{-40}{10}< x< \frac{-3}{10}\)
\(\Rightarrow Z\in\left\{-4;-5;-6;-7;-8;-9;-10;...;-39\right\}\)
a) \(x+\frac{1}{6}=-\frac{3}{8}\)
\(x=-\frac{3}{8}-\frac{1}{6}\)
\(x=-\frac{13}{24}\)
~ Thiên mã ~
b) \(\frac{1}{2}.x+\frac{1}{8}.x=\frac{3}{4}\)
\(x.\left(\frac{1}{2}+\frac{1}{8}\right)=\frac{3}{4}\)
\(\frac{5}{8}.x=\frac{3}{4}\)
\(x=\frac{6}{5}\)
~ Thiên Mã ~
Đặt \(\frac{a}{5}=\frac{b}{6}=\frac{c}{7}=k\Rightarrow\hept{\begin{cases}a=5k\\b=6k\\c=7k\end{cases}}\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left(5k-6k\right)\left(6k-7k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)(1)
và \(\left(c-a\right)^2=\left(7k-5k\right)^2=\left(2k\right)^2=4k^2\)(2)
Từ (1) và (2) suy ra \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có;
\(\frac{a}{5}=\frac{b}{6}=\frac{c}{7}=\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)
\(\Leftrightarrow\hept{\begin{cases}a-b=b-c\\c-a=-2\left(b-c\right)=-2\left(a-b\right)\end{cases}}\)
\(\left(c-a\right)^2=-2\left(a-b\right)\cdot-2\left(b-c\right)=4\left(a-b\right)\left(b-c\right)\)(đpcm)