Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c
<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1
a) sai đề rồi bn
b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\left(\frac{a+b}{c+d}\right)^3\)(tính chất dãy tỉ số bằng nhau) (1)
\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^3-b^3}{c^3-d^3}\)(2)
từ (1) và (2)\(\Rightarrow\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\left(đpcm\right)\)
Mình chỉ làm bài 1a, và bài 3 thôi nhé,còn lại là bạn tự làm nhé
Bài 1:
a, Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\left[\frac{a}{b}\right]^2=\left[\frac{c}{d}\right]^2=\left[\frac{a+c}{b+d}\right]^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{(a+c)^2}{(b+d)^2}\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{(a+c)^2}{(b+d)^2}\)
Bài 3 : Sửa đề : Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
CM : a = b = c
Cách 1 : Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
vì \(a+b+c\ne0\)
\(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c\)
Do đó : \(a=b=c\).
Cách 2 : Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=m\), ta có : \(a=bm,b=cm,c=am\)
Do đó : \(a=bm=m(mc)=m\left[m(ma)\right]\)
\(\Rightarrow a=m^3a\Rightarrow m^3=1(a\ne0)\Rightarrow m=1\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)
Cách 3 : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}=\left[\frac{a}{b}\right]^3\Rightarrow1=\left[\frac{a}{b}\right]^3\Rightarrow\frac{a}{b}=1\)
Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)
Tôi chỉ gợi ý thôi. Bạn đặt tỉ lệ thức đã cho bằng 1 số k nào đó
Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a\cdot b}{c\cdot d}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)
đặt \(\frac{a}{b}\)=\(\frac{c}{d}\)=k =>a=bk; c=dk
xét: \(\frac{ab}{cd}\)=\(\frac{bk.b}{dk.d}\)=\(\frac{b^2}{d^2}\)
\(\frac{a^2-b^2}{c^2-d^2}\)=\(\frac{b^2k^2-b^2}{d^2k^2-d^2}\)=\(\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}\)=\(\frac{b^2}{d^2}\)
=> \(\frac{ab}{cd}\)=\(\frac{a^2-b^2}{c^2-d^2}\)đpcm
tương tự
xét: \(\left(\frac{a+b}{c+d}\right)^2\)=\(\left(\frac{bk+b}{dk+d}\right)^2\)=\(\left(\frac{b\left(k+1\right)}{d\left(k+1\right)}\right)^2\)=\(\frac{b^2}{d^2}\)
\(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{b^2k^2+b^2}{d^2k^2+d^2}\)=\(\frac{b^2\left(k+1\right)}{d^2\left(k+1\right)}\)=\(\frac{b^2}{d^2}\)
=> \(\left(\frac{a+b}{c+d}\right)^2\)=\(\frac{a^2+b^2}{c^2+d^2}\)đpcm
Đặt : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
Suy ra: a = bk; b = ck; c = dk
Ta có: \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}=k^3\left(1\right)\)
và \(\left(\frac{a+b+c}{b+c+d}\right)^3=\left(\frac{bk+ck+dk}{b+c+d}\right)^3=\frac{k^3\left(b+c+d\right)}{b+c+d}=k^3\left(2\right)\)
Từ (1) và (2) suy ra: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\left(đpcm\right)\)
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\), suy ra: a=bk; b=ck; c=dk
ta có: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\left(\frac{bk+ck+dk}{b+c+d}\right)^3=k^3\)mà \(k^3=\left(\frac{a}{b}\right)^3\ge\frac{a}{b}\)dấu"="ra khi a=b=c=d. suy ra: người ra đề tào lao bí đao
nên sửa lại là: Cho\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=1\)