Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(=\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}\)
\(=1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}\)
\(=3+Q\)
Suy ra \(3+Q=1\Leftrightarrow Q=-2\).
Ta có :
Đặt \(\frac{a}{2019}\)= \(\frac{b}{2020}\)= \(\frac{c}{2021}\)= k
=> a = 2019k; b = 2020k; c = 2021k
M = 4(a-b).(b-c) - (c-a)
M = 4(2019k- 2020k). (2020k-2021k) - (2021k - 2019k)
M = 4.(-1)k.(-1)k - 2k
M = 4k2 - 2k
(Hình như mình thấy đề bạn có gì sai sai)
Đặt \(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2022}=k\Rightarrow\hept{\begin{cases}a=2020k\\b=2021k\\c=2022k\end{cases}}\)
Khi đó M = 4(a - b)(b - c) - (c - a)2
= 4(2020k - 2021k)(2021k - 2022k) - (2022k - 2020k)2
= 4(-k)(-k) - (2k)2
= 4k2 - 4k2 = 0
Vậy M = 0
Đặt \(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2022}=k\)( \(k\ne0\))
\(\Rightarrow a=2020k\); \(b=2021k\); \(c=2022k\)
Thay a, b, c vào biểu thức M ta có:
\(M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
\(=4\left(2020k-2021k\right)\left(2021k-2022k\right)-\left(2022k-2020k\right)^2\)
\(=4.\left(-k\right).\left(-k\right)-\left(2k\right)^2=4k^2-4k^2=0\)
Vậy \(M=0\)
Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
=> \(\left(\frac{a}{c}\right)^{2021}=\left(\frac{b}{d}\right)^{2021}=\left(\frac{a-b}{c-d}\right)^{2021}\)
=> \(\frac{a^{2021}}{c^{2021}}=\frac{b^{2021}}{d^{2021}}=\left(\frac{a-b}{c-d}\right)^{2021}=\frac{a^{2021}+b^{2021}}{c^{2021}+d^{2021}}\)
=>\(\left(\frac{a-b}{c-d}\right)^{2021}=\frac{a^{2021}+b^{2021}}{c^{2021}+d^{2021}}\)(đpcm)
a,theo t/c dãy tỉ số = nhau ta có:
a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra a=b=c mà a=2021
suy ra b=2021,c=2021
suy ra b+c=2021+2021=4042
b, a2021.b2021/c2021 mà a=b=c suy ra a2021.a2021/a2021=a2021 mà a=2021 suy ra a2021.b2021/c2021=20212021