K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

\(a+b+c\ne0\) biết a = 2003

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

\(\frac{a}{b}=\frac{c}{a}\Rightarrow bc=a^2=2003^2\)

\(\Rightarrow b=2003;c=2003\\\)

Vậy b = 2003;c = 2003

11 tháng 8 2016

ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\begin{cases}=>a=b\\=>b=c\\=>c=a\end{cases}=>a=b=c}\)

\(b=2003;c=2003\)

23 tháng 8 2016

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{a+b}{2ab}\)

\(\Rightarrow2ab=ac+bc\Rightarrow ab-bc=ac-ab\Rightarrow b\left(a-c\right)=a\left(c-b\right)\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(dpcm\right)\)

1 tháng 1 2018

Ta có: 

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow ad=bc\)

\(\Rightarrow ac-ad=ac-bc\)

\(\Rightarrow a\left(c-d\right)=c\left(a-b\right)\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

Vậy \(\frac{a}{a-b}=\frac{c}{c-d}\)

1 tháng 1 2018

Ta có :

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow ad=bc\)

\(\Rightarrow ac-ad=ac-bc\)

\(\Rightarrow a\left(c-d\right)=c\left(a-b\right)\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

\(KL:\frac{a}{a-b}=\frac{c}{c-d}\)

24 tháng 3 2019

\(\Leftrightarrow\frac{6+ab}{6a}=\frac{1}{3}\)

\(\Rightarrow18+3ab=6a\)

\(\Leftrightarrow\frac{3ab+18}{6}=3+\frac{ab}{2}=a\)

Để a nguyên thì \(ab⋮2\Rightarrow ab=2k\left(k\in Z\right)\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=2\\b=k\end{matrix}\right.\\\left\{{}\begin{matrix}a=k\\b=2\end{matrix}\right.\end{matrix}\right.\)

Vậy \(\left(a;b\right)=\left(2;k\right);\left(k;2\right)\)

Y
17 tháng 5 2019

a) \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow A< \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

b) b = a - c => b + c = a

\(\left\{{}\begin{matrix}\frac{a}{b}\cdot\frac{a}{c}=\frac{a^2}{bc}\\\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a^2}{bc}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{b}\cdot\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)

17 tháng 5 2019

Bước 2 bạn sai rồi. Vd: \(\frac{1}{3x3}\) đâu bằng hay nhỏ hơn \(\frac{1}{2x3}\)

Bài 1: D

Bài 2:

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}\pm1=\frac{c}{d}\pm1\)

\(\Rightarrow\frac{a\pm b}{b}=\frac{c\pm d}{d}\)(đpcm)

2 tháng 12 2016

Đặt\(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk ;c=dk\)

\(\Rightarrow\frac{a-b}{a}=\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}=\frac{k-1}{k}\left(1\right)\)

     \(\frac{c-d}{d}=\frac{dk-d}{kd}=\frac{d\left(k-1\right)}{kd}=\frac{k-1}{k}\left(2\right)\)

Từ (1) và (2)=> \(\frac{a-b}{a}=\frac{c-d}{c}\)