K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2019

áp dụng tính chất dãy tỉ số bằng nhau ta có 

a/b=b/c=c/a=(a+b+c)/(b+c+a)=1 ( Vì a+b+c khác 0)

=> a=b=c=2006

16 tháng 11 2019

Nhg a= 2008 co ma

19 tháng 8 2016

a) Khi n = 10 có:

\(A=\frac{10-5}{10+1}=\frac{5}{11}\)

b) Khi n = 0

\(A=\frac{0-5}{0+1}=-\frac{5}{1}=-5\)

c) Để A thuộc Z thì n - 5 chia hết cho n + 1

=> n - 6 + 1 chia hết cho n + 1

=> n + 1 chia hết cho n + 1 =>  -6 chia hết n + 1

=> n + 1 thuộc Ư (6) = {1;2;3;6;-1;-2;-3;-6} 

=> n thuộc {0;1;2;5;-2;-3;-4;-7}

d. Để A tối giản thì n = {0;5;-2}

19 tháng 8 2016

Khi n = 0 ta có : 

\(A=\frac{0-5}{0+1}=\frac{-5}{1}\)

29 tháng 7 2019

Đề sửa lại là: Chứng minh \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\) nhé.

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}=\frac{a+b+c}{2.\left(a+b+c\right)}.\)

Xét 2 trường hợp:

TH1: \(a+b+c=0\) thì \(\left\{{}\begin{matrix}b+c=-a\\a+c=-b\\a+b=-c\end{matrix}\right.\)

Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\), không phụ thuộc vào các giá trị \(a;b;c\) (1)

TH2: \(a+b+c\ne0\) thì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}.\)

\(\Rightarrow\left\{{}\begin{matrix}2a=b+c\\2b=a+c\\2c=a+b\end{matrix}\right.\)

Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\), không phụ thuộc vào các giá trị \(a;b;c\) (2)

Từ (1) và (2) => \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\) không phụ thuộc vào các giá trị của \(a;b;c.\)

Chúc bạn học tốt!

29 tháng 7 2019

Ngan Vu Thi

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{2a+b+c}{a}=\frac{2b+c+a}{b}=\frac{2c+a+b}{c}=\frac{2a+b+c+2b+c+a+2c+a+b}{a+b+c}=\frac{4\left(a+b+c\right)}{a+b+c}=4\)

\(\Rightarrow\frac{2a+b+c}{a}=4\Rightarrow2a+b+c=4a\Rightarrow b+c=4a-2a=2a\)

          \(\frac{2b+c+a}{b}=4\Rightarrow2b+c+a=4b\Rightarrow c+a=4b-2b=2b\)

          \(\frac{2c+a+b}{c}=4\Rightarrow2c+a+b=4c\Rightarrow a+b=4c-2c=2c\)   

Suy ra \(P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=\frac{8abc}{abc}=8\)

Vậy P=8

31 tháng 8 2016

Do x < y

=> \(\frac{a}{m}< \frac{b}{m}\)

=> \(\frac{a}{m}+\frac{a}{m}< \frac{a}{m}+\frac{b}{m}< \frac{b}{m}+\frac{b}{m}\)

=> \(\frac{2a}{m}< \frac{a+b}{m}< \frac{2b}{m}\)

=> \(\frac{a}{m}< \frac{a+b}{m}:2< \frac{b}{m}\)

=> \(\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)

=> x < z < y

21 tháng 8 2017

x. (x^2)^3 = x^5 
x^7 ≠ x^5 
Nếu, 
x^7 - x^5 = 0 
mủ lẻ nên phương trình có 3 nghiệm 
Đáp số: 
x = -1 
hoặc 
x = 0 
hoặc 
x = 1 

28 tháng 11 2019

co ai biet ko? Neu biet thi giup mk voi

3 tháng 3 2016

a = 3

b = 3

c = 3

4 tháng 3 2016

mi ghi lộn đề ak phúc 

6 tháng 1 2018

Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)
a=b=c=2017

6 tháng 1 2018

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\frac{a}{b}=1\Rightarrow a=b\)\(\frac{b}{c}=1\Rightarrow b=c\)\(\frac{c}{a}=1\Rightarrow c=a\)

Suy ra : a = b = c = 1

Nếu a = 2017 thì : b = c = 2017

4 tháng 9 2019

Ta có:M=\(\frac{a^{10}b^7c^{2000}}{b^{2017}}\)=\(\frac{a^{10}}{b^{10}}\)x\(\frac{b^7}{b^7}\)x\(\frac{c^{2000}}{b^{2000}}\)=\(\left(\frac{a}{b}\right)^{10}\)x\(\left(\frac{c}{b}\right)^{2000}\)=\(\left(\frac{a}{b}\right)^{10}\)x\(\left(\frac{b}{c}\right)^{-2000}\)

Mà \(\frac{a}{b}\)=\(\frac{b}{c}\)nên M=\(\left(\frac{a}{b}\right)^{10}\)x\(\left(\frac{a}{b}\right)^{-2000}\)=\(\left(\frac{a}{b}\right)^{-1990}\)

4 tháng 9 2019

 tinh m ma

4 tháng 6 2016

chung minh a=b=c, suy ra M=1