Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{b+c-a}{3+4-2}=\frac{a-b+c}{2-3+4}\)\(\Rightarrow P=\frac{b+c-a}{a-b+c}=\frac{3+4-2}{2-3+4}=\frac{5}{3}\)
a/ Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c};c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=k^3\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)
Áp dụng tính chất của tỉ lệ thức ta có:\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=k^3\)
Mặt khác: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\frac{a+b+c}{b+c+d}=k\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=k^3\)
\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(=k^3\right)\)
Ta đặt \(\frac{a}{b}=\frac{7}{4}\Leftrightarrow\frac{a}{7}=\frac{b}{4}=k\)
\(\Rightarrow a=7k;b=4k\)
\(A=\frac{3a^2+16ab}{3b^2-18a^2}=\frac{3\left(7k\right)^2+16\left(7k\cdot4k\right)}{3\left(4k\right)^2-28\left(7k\right)^2}=\frac{3\cdot7^2k^2+16\cdot28k^2}{3\cdot4^2k^2-28\cdot7^2k^2}\)
\(=\frac{147k^2+448k^2}{48k^2-1372k^2}=\frac{k^2\left(147+448\right)}{k^2\left(48-1372\right)}=-\frac{651}{1324}\)
uk cảm ơn bạn nha <3