\(\frac{AB}{CD}=\frac{7}{10}\) . Hãy tìm độ dài AB và CD trong trường hợp 3CD-AB=7
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 2 2020

\(3CD-AB=7\Rightarrow AB=3CD-7\)

Thay vào \(\frac{AB}{CD}=\frac{7}{10}\Rightarrow\frac{3CD-7}{CD}=\frac{7}{10}\)

\(\Leftrightarrow10\left(3CD-7\right)=7CD\Leftrightarrow23CD=70\)

\(\Rightarrow CD=\frac{70}{23}\Rightarrow AB=\frac{49}{23}\)

14 tháng 2 2020

Bạn tiện làm hộ mình câu giống dạng câu trên mà trong TH

3CD-5AB=9. Mình cảm ơn!

6 tháng 1 2020

Ta có: \(\frac{AB}{CD}=\frac{7}{10}.\)

\(\Rightarrow\frac{AB}{7}=\frac{CD}{10}\)\(CD-AB=5.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{AB}{7}=\frac{CD}{10}=\frac{CD-AB}{10-7}=\frac{5}{3}.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{AB}{7}=\frac{5}{3}\Rightarrow AB=\frac{5}{3}.7\approx11,67\\\frac{CD}{10}=\frac{5}{3}\Rightarrow CD=\frac{5}{3}.10\approx16,67\end{matrix}\right.\)

Vậy \(AB\approx11,67;CD\approx16,67.\)

Chúc bạn học tốt!

9 tháng 2 2020

Ta có: \(\frac{AB}{CD}=\frac{2}{3}\Rightarrow\frac{AB}{2}=\frac{CD}{3}\Leftrightarrow\frac{AB}{2.4}=\frac{CD}{3.4}\)

Và: \(\frac{CD}{EF}=\frac{4}{6}\Rightarrow\frac{CD}{4}=\frac{EF}{6}\Leftrightarrow\frac{CD}{4.3}=\frac{FE}{6.3}\)

\(\Rightarrow\frac{AB}{8}=\frac{CD}{12}=\frac{EF}{18}=\frac{AB+CD+EF}{8+12+18}=\frac{70}{38}=\frac{35}{19}\)

\(\Rightarrow\frac{AB}{8}=\frac{35}{19}\Rightarrow AB=\frac{35.8}{19}=\frac{280}{19}cm\)

\(\Rightarrow\frac{CD}{12}=\frac{35}{19}\Rightarrow CD=\frac{35.12}{19}=\frac{420}{19}cm\)

\(\Rightarrow\frac{FE}{18}=\frac{15}{19}\Rightarrow EF=\frac{35.18}{19}=\frac{630}{19}cm\)

Vậy ........................

22 tháng 8 2019

1.Ta co:\(\frac{AB}{BC}.\frac{BC}{CD}=\frac{5}{7}.\frac{7}{9}=\frac{5}{9}\)

\(\Rightarrow\frac{AB}{CD}=\frac{5}{9}\)

2.Tu gia thuyet suy ra:\(\frac{AB}{5}=\frac{BC}{7}=\frac{CD}{9}\)

Dat \(\frac{AB}{5}=\frac{BC}{7}=\frac{CD}{9}=k\)

\(\Rightarrow\hept{\begin{cases}AB=5k\\BC=7k\\CD=9k\end{cases}}\)

Theo de bai ta co:\(AB+BC+CD=5k+7k+9k=21k=84\)

\(\Rightarrow k=4\)

\(\Rightarrow\hept{\begin{cases}AB=5k=20\\BC=7k=28\\CD=9k=36\end{cases}}\)

:)

29 tháng 2 2020

A B C D I K O

\(1,\hept{\begin{cases}OI//AB\Rightarrow\frac{OI}{AB}=\frac{OD}{BD}\\OI//CD\Rightarrow\frac{OI}{CD}=\frac{OA}{AC}\\AB//CD\Rightarrow\frac{OA}{AC}=\frac{OB}{BD}\end{cases}}\Rightarrow\frac{OI}{AB}+\frac{OI}{CD}=\frac{OD}{BD}+\frac{OA}{AC}=\frac{OD}{BD}+\frac{OB}{BD}=\frac{BD}{BD}=1\)

\(\hept{\begin{cases}OK//AB\Rightarrow\frac{OC}{AC}=\frac{OK}{AB}\\OK//CD\Rightarrow\frac{OK}{CD}=\frac{OB}{BD}\\\frac{CB}{BD}=\frac{OA}{AC}\end{cases}}\Rightarrow\frac{OK}{AB}+\frac{OK}{CD}=\frac{OC}{AC}+\frac{OB}{BD}=\frac{OC}{AC}+\frac{OA}{AC}=\frac{AC}{AC}=1\)

\(2,\hept{\begin{cases}\frac{OI}{AB}+\frac{OI}{CD}=1\\\frac{OK}{AB}+\frac{OK}{CD}=1\end{cases}}\Rightarrow\frac{OI}{AB}+\frac{OI}{CD}+\frac{OK}{AB}+\frac{OK}{CD}=2\)

\(\Leftrightarrow\frac{OI+OK}{AB}+\frac{OI+OK}{CD}=2\)

\(\Leftrightarrow\frac{IK}{AB}+\frac{IK}{CD}=2\)

\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{IK}\left(đpcm\right)\)

29 tháng 2 2020

Giúp mik bài này với: https://olm.vn/hoi-dap/detail/244594379058.html

a) \(\frac{AB+CD}{CD}=\frac{AB}{CD}+1\)Hay \(\frac{AB+CD}{CD}=\frac{4}{5}+1=\frac{9}{5}\)

b) \(\frac{C'D'-A'B'}{A'B'}=\frac{C'D'}{A'B'}-1\)Hay \(\frac{C'D'-A'B'}{A'B'}=\frac{5}{4}-1=\frac{1}{4}\)

=> \(\frac{A'B'}{C'D'-A'B'}=4\)

c) Ta có: 3CD = C'D' => \(\frac{CD}{C'D'}=\frac{1}{3}\)

Mà \(\frac{CD}{C'D'}=\frac{AB}{A'B'}\) nên \(\frac{AB}{A'B'}=\frac{1}{3}\)

13 tháng 3 2020

a,Ta có :\(\frac{AB}{CD}=\frac{4}{5}\Leftrightarrow AB=\frac{4CD}{5}\)

mà CD=10cm nên \(AB=\frac{4.10}{5}=8\left(cm\right)\)

b,theo câu a, \(AB=\frac{4}{5}CD\)

Ta có :CD - AB = 2 cm (1)

Thay \(AB=\frac{4}{5}CD\) vào (1) nên :

\(CD-\frac{4}{5}CD=2cm\)

\(\Leftrightarrow\frac{1}{5}CD=2cm\)

\(\Leftrightarrow CD=10cm\)

\(\Rightarrow AB=8cm\)

27 tháng 4 2020

C. 8 cm 

Nãy mk có tl nhưng bị duyệt nên tl lại nha :3

19 tháng 4 2020

do AB/CD=MN/PQ => AB.PQ=MN.CD

TA CÓ: AB.PQ=MN.CD=>AB.PQ+CD.PQ=MN.CD+CD.PQ=>PQ(AB+CD)=CD(MN+PQ)=>AB+CD/CD=MN+PQ/PQ

TA CÓ: AB.PQ=MN.CD=>AB.PQ-CD.PQ=MN.CD-CD.PQ=>PQ(AB-CD)=CD(MN-PQ)=>AB-CD/CD=MN-PQ/PQ

NHỚ