Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai: \(x^2=bc\) phải là \(a^2=bc\)
Ta có: \(\frac{a+b}{a-b}=\frac{c+a}{c-a}=k\)
\(\Rightarrow a+b=k.\left(a-b\right)\Leftrightarrow a+b=ka-kb\)
\(\Rightarrow a-ka=-b-kb\)
\(\Rightarrow a.\left(1-k\right)=-b.\left(1+k\right)\) ( 1)
Ta lại có: \(c+a=k.\left(c-a\right)\Leftrightarrow c+a=kc-ka\)
\(\Rightarrow c-kc=-a-ka\)
\(\Rightarrow c.\left(1-k\right)=-a.\left(1+k\right)\) ( 2)
Từ (1) và (2) \(\Rightarrow\frac{a.\left(1-k\right)}{c.\left(1-k\right)}=\frac{-b.\left(1+k\right)}{-a.\left(1+k\right)}\Leftrightarrow\frac{a}{c}=\frac{b}{a}\)
\(\Rightarrow a^2=bc\left(đpcm\right)\)
\(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)(Dãy tỉ số bằng nhau )
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
\(k\)nhé !!!
\(\frac{a}{b}=\frac{d}{c}\Rightarrow\frac{a^2}{b^2}=\frac{d^2}{c^2}=\frac{ad}{bc}\) (1)
Áp dụng dãy tỉ số bằng nhau:
\(\frac{a^2}{b^2}=\frac{d^2}{c^2}=\frac{a^2+d^2}{b^2+c^2}\)(2)
Từ (1), (2) => điều phải chứng minh
C2
đặt\(\frac{a}{b}=\frac{d}{c}=k\Rightarrow a=bk,d=ck\)
\(\Rightarrow\frac{a^2+d^2}{b^2+c^2}=\frac{\left(bk\right)^2+\left(ck\right)^2}{b^2+c^2}=\frac{k^2.\left(b^2+c^2\right)}{b^2+c^2}=k^2\left(1\right)\)
\(\frac{ad}{bc}=\frac{bk.ck}{bc}=k^2\left(2\right)\)
từ (1) và (2) => đpcm
\(\frac{a}{b}=\frac{ad}{bd}\)
\(\frac{c}{d}=\frac{cb}{bd}\)
Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bc}< \frac{bc}{bd}\)
Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{7a}{7c}=\frac{b+7a}{d+7c}\)
\(\Rightarrow\frac{a}{b+7a}=\frac{c}{d+7c}\)( đpcm )
Đặt \(\hept{\begin{cases}\frac{a}{b}=k\Rightarrow a=bk\\\frac{c}{d}=q\Rightarrow c=dq\end{cases}}\)
a) Thay a và c vào biểu thức ta có :
\(\frac{bk}{b}< \frac{dq}{d}\Rightarrow k< q\)
=> ad ... bc
=> bkd ... bdq
=> k ... q
=> k < q
=> đpcm
b) tương tự thay a và c vào