Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Ta có \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Leftrightarrow\left(a+b\right)\left(c-a\right)=\left(a-b\right)\left(c+a\right)\)
\(\Leftrightarrow ac-a^2+bc-ab=ac+a^2-bc-ab\Leftrightarrow2a^2=2bc\Leftrightarrow a^2=bc\) (dpcm)
+ Ngược lại ta có
\(a^2=bc\Leftrightarrow\frac{a}{c}=\frac{b}{a}\) với \(a\ne0;c\ne0\)
\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\) => điều ngược lại đúng với a,c khác 0
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
=> \(\frac{2}{c}=\frac{1}{a}+\frac{1}{b}\)
=> \(\frac{2}{c}=\frac{a+b}{ab}\)
=> 2ab = ac + bc
=> ac + bc - 2ab = 0
=> (ac - ab) + (bc - ab) = 0
=> a(c - b) + b(c - a) = 0
=> a(c - b) = -b(c - a)
=> a(c - b) = b(a - c)
=> \(\frac{a}{b}=\frac{a-c}{c-b}\) (đpcm)
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{b}{a}=\frac{d}{c}\)
\(\Rightarrow\frac{b}{a}-1=\frac{d}{c}-1\)
\(\Rightarrow\frac{b}{a}-\frac{a}{a}=\frac{d}{c}-\frac{c}{c}.\)
\(\Rightarrow\frac{b-a}{a}=\frac{d-c}{c}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\left(đpcm\right).\)
Chúc bạn học tốt!
ta có: \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(=\frac{1}{c}\times2=\frac{1}{a}+\frac{1}{b}\)
\(=\frac{2}{c}=\frac{1}{a}+\frac{1}{b}\)
\(=\frac{2}{c}=\frac{b+a}{ab}\)
= \(c\left(b+a\right)=ab\times2\)
= cb +ca = ab+ab
= ab - cb = ac-ab
\(=b\left(a-c\right)=a\left(c-b\right)\)
= \(\frac{a}{b}=\frac{a-c}{c-b}\)
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\frac{1}{c}=\frac{1}{2a}+\frac{1}{2b}\)
\(\frac{1}{c}=\frac{a+b}{2ab}\)
\(2ab=c\left(a+b\right)\)
\(ab+ab=ac+bc\)
\(ab-bc=ac-ab\)
\(b\left(a-c\right)=a\left(c-b\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)
Từ \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{1}{2}\left(\frac{a+b}{ab}\right)\)
\(\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\)
\(\Rightarrow2ab=c.\left(a+b\right)\)
\(\Rightarrow ab+ab=ac+bc\)
\(\Rightarrow ab-bc=ac-ab\)
\(\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)
Ta có: a/b=c/d =>a.d=b.c
a/a-b=a.d/d.(a-b)=b.c/a.d-b.d=b.c/b.c-b.d=b.c/b.(c-d)=c/c-d
<=>a/a-b=c/c-d(ĐPCM)
Gọi \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=kb;c=kd\)
Thay vào ta có :
\(\frac{a}{a-b}=\frac{kb}{kb-b}=\frac{kb}{\left(k-1\right)b}=\frac{k}{k-1}\)
\(\frac{c}{c-d}=\frac{kd}{kd-d}=\frac{kd}{\left(k-1\right)d}=\frac{k}{k-1}\)
Mà \(\frac{k}{k-1}=\frac{k}{k-1}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
\(\RightarrowĐPCM\)
Có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\left(1\right)\\ \Rightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)
\(\frac{a-b}{c-d}=\frac{ck-dk}{c-d}=\frac{k\left(c-d\right)}{c-d}=k\left(2\right)\)
(1)(2) \(\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\)