\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}=1\)   Tính giá trị của biểu thức: a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

bình phương gt1 và gt2 và thay vào là ra bạn à

9 tháng 12 2018

\(a\left(a^2-bc\right)+b\left(b^2-ca\right)+c\left(c^2-ab\right)=0\)

\(\Rightarrow a^3-abc+b^3-abc+c^3-abc=0\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\) 

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

Mà \(a+b+c\ne0\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}\Rightarrow}a=b=c\)

Vậy \(P=\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=1+1+1=3\)

10 tháng 7 2016

Ta có:

\(a^3+b^3+c^3=3abc=>a^3+b^3+c^3-3abc=0\)

\(=>\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)

\(=>\left[\left(a+b\right)^3+c^3\right]-3a^2b-3ab^2-3abc=0\)

\(=>\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)=0\)

\(=>\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(=>\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)=0\)

\(=>\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Vì a3+b3+c3=3abc và a+b+c khác 0

=>\(a^2+b^2+c^2-ab-bc-ca=0\)

\(=>2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(=>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Tổng 3 số không âm = 0 <=> chúng đều = 0

\(< =>\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}< =>a=b=c}\)

Vậy \(\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{1}{3}\)

\(\)

10 tháng 7 2016

Ta có ; \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ac\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\frac{a+b+c}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

Vì \(a+b+c\ne0\) nên ta có \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)

a) Thay a = b = c vào biểu thức được : \(\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

b) Thay a = b = c vào P : \(P=\frac{2}{a}.\frac{2}{b}\frac{2}{c}=\frac{8}{abc}\)

8 tháng 8 2017

Từng ý nhé !!!

\(P=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{1}{abc}\left(a^3+b^3+c^3\right)\)

\(\frac{1}{abc}.3abc=3\)

8 tháng 8 2017

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

Xét \(a+b+c=0\) ta có :\(\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)

\(Q=\frac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}+\frac{b^2}{\left(b+c\right)\left(b-c\right)-a^2}+\frac{c^2}{\left(c+a\right)\left(c-a\right)-b^2}\)

\(=\frac{a^2}{-ac+bc-c^2}+\frac{b^2}{-ab+ac-a^2}+\frac{c^2}{-bc+ab-b^2}\)

\(=\frac{a^2}{-c\left(a+c\right)+bc}+\frac{b^2}{-a\left(a+b\right)+ac}+\frac{c^2}{-b\left(c+b\right)+ab}\)

\(=\frac{a^2}{bc+bc}+\frac{b^2}{ac+ac}+\frac{c^2}{ab+ab}\)

\(=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{1}{2abc}\left(a^3+b^3+c^3\right)=\frac{1}{2abc}.3abc=\frac{3}{2}\)

Xét \(a=b=c\) ta có :

\(Q=\frac{a^2}{a^2-a^2-a^2}+\frac{b^2}{b^2-b^2-b^2}+\frac{c^2}{c^2-c^2-c^2}=-1-1-1=-3\)

3 tháng 4 2019

a) \(x^3+y^3+z^3-3xyz\)

\(=x^3+3x^2y+3xy^2+y^3+z^3-3x^2y-3xy^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

5 tháng 4 2019

câu b đâu

AH
Akai Haruma
Giáo viên
26 tháng 6 2020

Lời giải:

Áp dụng BĐT AM-GM:
$\frac{a^2}{4}+\frac{1}{a^2}\geq 1$

$\frac{b^2}{4}+\frac{1}{b^2}\geq 1$

$\frac{c^2}{4}+\frac{1}{c^2}\geq 1$

$\frac{3}{4}a^2\geq \frac{3}{2}; \frac{3}{4}b^2\geq \frac{3}{2}; \frac{3}{4}c^2\geq \frac{3}{2}$ do $a,b,c\geq \sqrt{2}$

Cộng theo vế các BĐT trên ta có:

$P\geq \frac{15}{2}$

Vậy $P_{\min}=\frac{15}{2}$ khi $a=b=c=\sqrt{2}$

12 tháng 1 2017

tích cho tớ nha cậu, mơn nhìu ạk

12 tháng 1 2017

Ai biết cách làm thì nhanh tay giải giùm mình nhé!!!!!!!!!!!!

mk đang cần gấp....<3<3<3<3<3<3

19 tháng 5 2020

a) Ta có: \(\frac{a^2}{a+b}-\frac{b^2}{a+b}+\frac{b^2}{b+c}-\frac{c^2}{b+c}+\frac{c^2}{c+a}-\frac{a^2}{c+a}\) \(=a-b+b-c+c-a=0\)

\(\Rightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}=\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}\)

\(\Rightarrow2\left(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\right)=\frac{a^2}{a+b}+\frac{b^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{b+c}+\frac{c^2}{c+a}+\frac{a^2}{c+a}\)\(\ge\frac{2ab}{a+b}+\frac{2bc}{b+c}+\frac{2ca}{c+a}\)

\(\Rightarrowđpcm\)

Dấu "=" \(\Leftrightarrow a=b=c\)

b) \(a^2b^2\left(a^2+b^2\right)=\frac{1}{2}\cdot ab\cdot2ab\cdot\left(a^2+b^2\right)\le\frac{1}{2}\cdot\frac{\left(a+b\right)^2}{4}\cdot\frac{\left(2ab+a^2+b^2\right)^2}{4}=2\)

Dấu "=" \(\Leftrightarrow a=b=1\)