Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\); \(b=3k\); \(c=5k\)
Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)
b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)
\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)
\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)
\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)
\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)
Do đó: +) \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)
+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)
+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)
\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)\(=\frac{\left(3a-2b\right).5}{5.5}=\frac{\left(2c-5a\right).3}{3.3}=\frac{\left(5b-3c\right).2}{2.2}\) \(=\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=\frac{0}{38}=0\)
\(\Rightarrow\frac{3a-2b}{5}=0\Rightarrow3a-2b=0\Rightarrow3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3}\) (1)
\(\frac{2c-5a}{3}=0\Rightarrow2c-5a=0\Rightarrow2c=5a\Rightarrow\frac{c}{5}=\frac{a}{2}\) (2)
Từ (1) và (2) ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
\(\Rightarrow\frac{a}{2}=-5\Rightarrow a=-10\)
\(\frac{b}{3}=-5\Rightarrow b=-15\)
\(\frac{c}{5}=-5\Rightarrow c=-25\)
\(\Rightarrow\)\(a^{b-c}=\left(-10\right)^{\left(-15\right)-\left(-25\right)}=\left(-10\right)^{10}=10^{10}\)
Bài này chỉ cần đưa về dạng thu gọn, ko cần tính ra kết quả cụ thể bạn nhé.
Ta có :
\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
\(\Leftrightarrow\)\(\frac{5\left(3a-2b\right)}{5.5}=\frac{3\left(2c-5a\right)}{3.3}=\frac{2\left(5b-3c\right)}{2.2}\)
\(\Leftrightarrow\)\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=\frac{0}{38}=0\)
Do đó :
\(\frac{3a-2b}{5}=0\)\(\Rightarrow\)\(3a-2b=0\)\(\Rightarrow\)\(3a=2b\)\(\Rightarrow\)\(\frac{a}{2}=\frac{b}{3}\) \(\left(1\right)\)
\(\frac{2c-5a}{3}=0\)\(\Rightarrow\)\(2c-5a=0\)\(\Rightarrow\)\(2c=5a\)\(\Rightarrow\)\(\frac{c}{5}=\frac{a}{2}\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
Do đó :
\(\frac{a}{2}=-5\)\(\Rightarrow\)\(a=\left(-5\right).2=-10\)
\(\frac{b}{3}=-5\)\(\Rightarrow\)\(b=\left(-5\right).3=-15\)
\(\frac{c}{5}=-5\)\(\Rightarrow\)\(c=\left(-5\right).5=-25\)
Suy ra :
\(a^{b-c}=\left(-10\right)^{-15-25}=\left(-10\right)^{-40}=10^{-40}\)
Vậy \(a^{b-c}=10^{-40}\)
Chúc bạn học tốt ~
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Do đó :
\(\frac{2b+c-a}{a}=2\)\(\Rightarrow\)\(c=3a-2b\)\(;\)\(2b=3a-c\)\(\left(1\right)\)
\(\frac{2c-b+a}{b}=2\)\(\Rightarrow\)\(a=3b-2c\)\(;\)\(2c=3b-a\)\(\left(2\right)\)
\(\frac{2a+b-c}{c}=2\)\(\Rightarrow\)\(b=3c-2a\)\(;\)\(2a=3c-b\)\(\left(3\right)\)
Thay (1), (2) và (3) vào \(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\) ta được :
\(P=\frac{c.a.b}{2b.2c.2a}=\frac{abc}{8abc}=\frac{1}{8}\)
Vậy \(P=\frac{1}{8}\)
Chúc bạn học tốt ~
Phùng Minh Quân sai nha nếu a+b+c = 0 thì a+b+c / 2(a+b+c) thì nó không bằng 1/2 đc mà nó bằng 0
Ta có: \(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\)
Áp dụng tính chất tỉ dãy số bằng nhau. Ta có:
\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\Leftrightarrow\frac{3a-b+3b-c+3c-a}{a+b+c}=\frac{3\left(a+b+c\right)-\left(a+b+c\right)}{a+b+c}\)
\(\Leftrightarrow\frac{\left(a+b+c\right)\left(3-1\right)}{a+b+c}=\frac{\left(a+b+c\right)2}{a+b+c}=2\).Do:
\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}=2\) nên:
\(\Rightarrow3a-b=2c\) (1)
\(\Rightarrow3b-c=2a\) (2)
\(\Rightarrow3c-a=2b\)(3)
Thế (1) ; (2) ; (3) vào A. Ta có:
\(\frac{a}{2b-3c}+\frac{b}{2c-3a}+\frac{c}{2a-3b}\)
\(\Leftrightarrow A=\frac{a}{3c-a-3c}+\frac{b}{3a-b-3a}+\frac{c}{3b-c-3b}\)
\(\Leftrightarrow A=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}\). Do: \(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\Rightarrow\frac{a}{-a}=\frac{b}{-b}=\frac{c}{-c}=\left(-1\right)\)
\(\Leftrightarrow A=\left(-1\right)+\left(-1\right)+\left(-1\right)=\left(-3\right)\)
P/s: Mình không chắc nên nếu sai thì bạn thông cảm nha
Mình làm thử các bạn xem có đúng ko nhé
Ta có :
\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}=\frac{3a-b+3b-c+3c-a}{a+b+c}=\frac{3a+3b+3c-a-b-c}{a+b+c}\)
\(=\frac{3\left(a+b+c\right)-\left(a+b+c\right)}{a+b+c}=\frac{\left(a+b+c\right)\left(3-1\right)}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=\frac{2}{1}=2\)
Do đó :
\(\frac{3a-b}{c}=2\)\(\Rightarrow\)\(3a-b=2c\)\(\left(1\right)\)
\(\frac{3b-c}{a}=2\)\(\Rightarrow\)\(3b-c=2a\)\(\left(2\right)\)
\(\frac{3c-a}{b}=2\)\(\Rightarrow\)\(3c-a=2b\)\(\left(3\right)\)
Thay (1), (2) và (3) vào A ta có :
\(A=\frac{a}{2b-3c}+\frac{b}{2c-3a}+\frac{c}{2a-3b}\)
\(A=\frac{a}{3c-a-3c}+\frac{b}{3a-b-3a}+\frac{c}{3b-c-3b}\)
\(A=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}\)
\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(A=-3\)
Vậy \(A=-3\)
Nếu đúng thì thui, sai thì đừng có k sai cho mình nha :)
Ta có :
\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}=\frac{3a-b+3b-c+3c-a}{a+b+c}=\frac{3\left(a+b+c\right)-\left(a+b+c\right)}{a+b+c}\)
\(=\frac{\left(a+b+c\right)\left(3-1\right)}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=\frac{2}{1}=2\)
Do đó :
\(\frac{3a-b}{c}=2\)\(\Rightarrow\)\(3a-b=2c\)\(\left(1\right)\)
\(\frac{3b-c}{a}=2\)\(\Rightarrow\)\(3b-c=2a\)\(\left(2\right)\)
\(\frac{3c-a}{b}=2\)\(\Rightarrow\)\(3c-a=2b\)\(\left(3\right)\)
Thay (1), (2) và (3) vào A ta có :
\(A=\frac{a}{2b-3c}+\frac{b}{2c-3a}+\frac{c}{2a-3b}\)
\(A=\frac{a}{3c-a-3c}+\frac{b}{3a-b-3a}+\frac{c}{3b-c-3b}\)
\(A=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}\)
\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(A=-3\)
Vậy \(A=-3\)
Chúc bạn học tốt
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Do đó :
\(\frac{2b+c-a}{a}=2\)\(\Rightarrow\)\(2b=2a+a-c=3a-c\)\(\left(1\right)\)
\(\frac{2c-b+a}{b}=2\)\(\Rightarrow\)\(2c=2b-a+b=3b-a\)\(\left(2\right)\)
\(\frac{2a+b-c}{c}=2\)\(\Rightarrow\)\(2a=2c+c-b=3c-b\)\(\left(3\right)\)
Thay (1), (2) và (3) vào P ta được :
\(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
\(P=\frac{\left(3a-3a+c\right)\left(3b-3b+a\right)\left(3c-3c+b\right)}{2b.2c.2a}\)
\(P=\frac{abc}{8abc}=\frac{1}{8}\)
Vậy \(P=\frac{1}{8}\)
Chúc bạn học tốt ~
đặt \(\frac{a}{2}=\frac{b}{-3}=\frac{c}{-4,5}=k\)
\(\Rightarrow a=2k,b=-3k,c=-4,5k\)
thay vào biểu thức P ta có:
\(P=\frac{3.2k-2.\left(-3k\right)}{8.2k-\left(-3k\right)+3.\left(-4,5k\right)}=\frac{6k+6k}{7,5k}=\frac{12}{7,5}=\frac{8}{5}\)